Volume 38 Issue 4
Jul.  2017
Turn off MathJax
Article Contents

Bin Gu, Katherine A. Dalton. Models and detection of spontaneous recurrent seizures in laboratory rodents. Zoological Research, 2017, 38(4): 171-179. doi: 10.24272/j.issn.2095-8137.2017.042
Citation: Bin Gu, Katherine A. Dalton. Models and detection of spontaneous recurrent seizures in laboratory rodents. Zoological Research, 2017, 38(4): 171-179. doi: 10.24272/j.issn.2095-8137.2017.042

Models and detection of spontaneous recurrent seizures in laboratory rodents

doi: 10.24272/j.issn.2095-8137.2017.042
Funds:  This study was supported by the American Epilepsy Society Fellowship (2016)
More Information
  • Corresponding author: Bin Gu, bin_gu@med.unc.edu
  • Received Date: 2017-04-05
  • Rev Recd Date: 2017-06-20
  • Publish Date: 2017-07-18
  • Epilepsy, characterized by spontaneous recurrent seizures (SRS), is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.
  • 加载中
  • [1] Ben-Ari Y, Tremblay E, Ottersen OP. 1980. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience, 5(3): 515-528.
    [2] Ben-Ari Y. 1985. Limbic seizure and brain damage produced by kainic acid:mechanisms and relevance to human temporal lobe epilepsy.Neuroscience, 14(2): 375-403.
    [3] Boillot M, Huneau C, Marsan E, Lehongre K, Navarro V, Ishida S, Dufresnois B, Ozkaynak E, Garrigue J, Miles R, Martin B, Leguern E, Anderson MP, Baulac S. 2014. Glutamatergic neuron-targeted loss of LGI1 epilepsy gene results in seizures. Brain, 137: 2984-2996.
    [4] Bolkvadze T, Pitkänen A. 2012. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. Journal of Neurotrauma, 29(5): 789-812.
    [5] Brandt C, Glien M, Potschka H, Volk H, Löscher W. 2003. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats.Epilepsy Research, 55(1-2): 83-103.
    [6] Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW. 2005. BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nature Neuroscience, 8(12): 1752-1759.
    [7] Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, Robbins CA, McKee-Johnson J, Chiu SY, Messing A, Tempel BL. 2007.Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. Journal of Neurophysiology, 98(3): 1501-1525.
    [8] Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R. 1995. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science, 270(5242): 1677-1680.
    [9] Burgess DL, Jones JM, Meisler MH, Noebels JL. 1997. Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell, 88(3): 385-392.
    [10] Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, RivaudPéchoux S, Fricker D, Baulac M, Miles R, LeGuern E, Baulac S. 2010.Electroclinical characterization of epileptic seizures in leucine-rich, gliomainactivated 1-deficient mice. Brain, 133(9): 2749-2762.
    [11] Chao HT, Chen HM, Samaco RC, Xue MS, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JLR, Noebels JL, Rosenmund C, Zoghbi HY. 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321):263-269.
    [12] Chen CL, Westenbroek RE, Xu XR, Edwards CA, Sorenson DR, Chen Y, McEwen DP, O'malley HA, Bharucha V, Meadows LS, Knudsen GA, Vilaythong A, Noebels JL, Saunders TL, Scheuer T, Shrager P, Catterall WA, Isom LL. 2004. Mice lacking sodium channel β1 subunits display defects in neuronal excitability, sodium channel , and nodal architecture. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24(16): 4030-4042.
    [13] Chen CL, Dickendesher TL, Oyama F, Miyazaki H, Nukina N, Isom LL. 2007. Floxed allele for conditional inactivation of the voltage-gated sodium channel β1 subunit Scn1b. Genesis, 45(9): 547-553.
    [14] Chen YC, Parker WD, Wang KL. 2014. The role of T-type calcium channel genes in absence seizures. Frontiers in Neurology, 5: 45.
    [15] Cheong E, Shin HS. 2013. T-type Ca2+ channels in absence epilepsy.Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(7): 1560-1571.
    [16] Cho CH. 2012. Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 6: 55.
    [17] Coenen AM, van Luijtelaar ELJM. 2003. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behavior Genetics, 33(6): 635-655.
    [18] D'ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW. 2004. Post-traumatic epilepsy following fluid percussion injury in the rat.Brain, 127: 304-314.
    [19] D'Cruz JA, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks JH. 2010.Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiology of Disease, 38(1): 8-16.
    [20] De Sarro G, Russo E, Citraro R, Meldrum BS. 2015. Genetically epilepsyprone rats (GEPRs) and DBA/2 mice: two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs. Epilepsy & Behavior, 2015, doi:  10.1016/j.yebeh.2015.06.030.
    [21] Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C. 2007. Sleep in Kcna2 knockout mice. BMC Biology, 5: 42.
    [22] Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. 2006.Temporal lobe epilepsy after experimental prolonged febrile seizures:prospective analysis. Brain, 129: 911-922.
    [23] Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B, Nakazawa K, Escayg A. 2013. Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiology of Disease, 49: 211-220.
    [24] Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA. 1996. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell, 87(4): 607-617.
    [25] Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, Akagi T, Gomi H, Suzuki T, Amano K, Agarwala KL, Hasegawa Y, Bai DS, Ishihara T, Hashikawa T, Itohara S, Cornford EM, Niki H, Yamakawa K. 2002. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Human Molecular Genetics, 11(11): 1251-1262.
    [26] Giorgi FS, Mauceli G, Blandini F, Ruggieri S, Paparelli A, Murri L, Fornai F. 2006. Locus coeruleus and neuronal plasticity in a model of focal limbic epilepsy. Epilepsia, 47 Suppl 5: 21-25.
    [27] Goldberg EM, Coulter DA. 2013. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nature Reviews Neuroscience, 14(5): 337-349.
    [28] Gorter JA, Van Vliet EA, Aronica E, Da Silva FHL. 2001. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. European Journal of Neuroscience, 13(4): 657-669.
    [29] Han K, Holder JL Jr, Schaaf CP, Lu H, Chen HM, Kang H, Tang JR, Wu ZY, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu HC, Zoghbi HY. 2013. SHANK3 over causes manic-like behaviour with unique pharmacogenetic properties. Nature, 503(7474): 72-77.
    [30] Harrington EP, Möddel G, Najm IM, Baraban SC. 2007. Altered glutamate receptor-transporter and spontaneous seizures in rats exposed to methylazoxymethanol in utero. Epilepsia, 48(1): 158-168.
    [31] Hawkins NA, Kearney JA. 2012. Confirmation of an epilepsy modifier locus on mouse chromosome 11 and candidate gene analysis by RNA-Seq.Genes, Brain and Behavavior, 11(4): 452-460.
    [32] Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. 2007. How common are the "common" neurologic disorders? Neurology, 68(5): 326-337.
    [33] Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. 2010. BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Molecular Neurodegener, 5: 31.
    [34] Hofstra WA, de Weerd AW. 2009. The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Medicine Reviews, 13(6):413-420.
    [35] Hunt RF, Scheff SW, Smith BN. 2009. Posttraumatic
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(446) PDF downloads(567) Cited by()

Related
Proportional views

Models and detection of spontaneous recurrent seizures in laboratory rodents

doi: 10.24272/j.issn.2095-8137.2017.042
Funds:  This study was supported by the American Epilepsy Society Fellowship (2016)
    Corresponding author: Bin Gu, bin_gu@med.unc.edu

Abstract: Epilepsy, characterized by spontaneous recurrent seizures (SRS), is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.

Bin Gu, Katherine A. Dalton. Models and detection of spontaneous recurrent seizures in laboratory rodents. Zoological Research, 2017, 38(4): 171-179. doi: 10.24272/j.issn.2095-8137.2017.042
Citation: Bin Gu, Katherine A. Dalton. Models and detection of spontaneous recurrent seizures in laboratory rodents. Zoological Research, 2017, 38(4): 171-179. doi: 10.24272/j.issn.2095-8137.2017.042
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return