Volume 38 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013
Citation: Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013

Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging

doi: 10.24272/j.issn.2095-8137.2017.013
Funds:  This work was supported by the Hundred-Talent Program of Chinese Academy of Sciences (Y406541141; 1100050210) to J.L., the National Natural Science Foundation of China (81471313; 91649119) to J.L., the National Science and Technology Infrastructure Program (2014BAI01B01-04) to S.L., and the National Natural Science Foundation of China (31260242 to) F.L.
More Information
  • Corresponding author: Fan Li, Jia-Li Li
  • Received Date: 2017-01-03
  • Rev Recd Date: 2017-03-06
  • Publish Date: 2017-03-18
  • Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.
  • loading
  • [1]
    Abel T, Zukin RS. 2008. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8(1):57-64.
    [2]
    Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. 2013. Loss of HDAC5 impairs memory function:implications for Alzheimer's disease. Journal of Alzheimer's Disease, 33(1):35-44.
    [3]
    Alagiakrishnan K, Gill SS, Fagarasanu A. 2012. Genetics and epigenetics of Alzheimer's disease. Postgraduate Medical Journal, 88(1043):522-529.
    [4]
    Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, Johnson AD, Gering M, Ruzov A. 2012a. 5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics, 7(4):383-389.
    [5]
    Almeida RD, Sottile V, Loose M, De Sousa PA, Johnson AD, Ruzov A. 2012b. Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics, 7(2):137-140.
    [6]
    Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H. 2012. Alzheimer's disease and environmental exposure to lead:the epidemiologic evidence and potential role of epigenetics. Current Alzheimer Research, 9(5):563-573.
    [7]
    Ballestar E, Yusufzai TM, Wolffe AP. 2000. Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry, 39(24):7100-7106.
    [8]
    Barbash S, Soreq H. 2012. Threshold-independent meta-analysis of Alzheimer's disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation. Current Alzheimer Research, 9(4):425-435.
    [9]
    Bihaqi SW, Schumacher A, Maloney B, Lahiri DK, Zawia NH. 2012. Do epigenetic pathways initiate late onset Alzheimer disease (LOAD):towards a new paradigm. Current Alzheimer Research, 9(5):574-588.
    [10]
    Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews:adjuncts and alternatives to primates as models for biomedical research. Journal of Medical Primatology, 32(3):123-130.
    [11]
    Chaudhry MA, Omaruddin RA. 2012. Differential DNA methylation alterations in radiation-sensitive and-resistant cells. DNA and Cell Biology, 31(6):908-916.
    [12]
    Chia N, Wang L, Lu XY, Senut MC, Brenner CA, Ruden DM. 2011. Hypothesis:environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics, 6(7):853-856.
    [13]
    Coppieters N, Dragunow M. 2011. Epigenetics in Alzheimers disease:a focus on DNA modifications. Current Pharmaceutical Design, 17(31):3398-3412.
    [14]
    Dahl C, Grønbæk K, Guldberg P. 2011. Advances in DNA methylation:5-hydroxymethylcytosine revisited. Clinica Chimica Acta, 412(11-12):831-836.
    [15]
    Davis T, Vaisvila R. 2011. High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue. Journal of Visualized Experiments, (48):2661.
    [16]
    Deaton AM, Bird A. 2011. CpG islands and the regulation of transcription. Genes & Development, 25(10):1010-1022.
    [17]
    Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao YG. 2013. Genome of the Chinese tree shrew. Nature Communications, 4:1426.
    [18]
    Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. 2010. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 5(12):e15367.
    [19]
    Guo JU, Su YJ, Zhong C, Ming GL, Song HJ. 2011. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3):423-434.
    [20]
    Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S. 2011. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget, 2(8):627-637.
    [21]
    Hansen JC, Ghosh RP, Woodcock CL. 2010. Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life, 62(10):732-738.
    [22]
    He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 333(6047):1303-1307.
    [23]
    Hutnick LK, Golshani P, Namihira M, Xue ZG, Matynia A, Yang XW, Silva AJ, Schweizer FE, Fan GP. 2009. DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Human Molecular Genetics, 18(15):2875-2888.
    [24]
    Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310):1129-1133.
    [25]
    Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047):1300-1303.
    [26]
    Jiang DW, Zhang Y, Hart RP, Chen JM, Herrup K, Li JL. 2015. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain, 138(12):3520-3536.
    [27]
    Jiang DW, Wei S, Chen F, Zhang Y, Li JL. 2017. TET3-mediated DNA oxidation promotes ATR-dependent DNA damage response. EMBO Reports, doi: 10.15252/embr.201643179.
    [28]
    Jin SG, Wu XW, Li AX, Pfeifer GP. 2011. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Research, 39(12):5015-5024.
    [29]
    Kinney SRM, Pradhan S. 2013. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer. In:Karpf AR. Epigenetic Alterations in Oncogenesis:Advances in Experimental Medicine and Biology. New York:Springer, 754:57-79.
    [30]
    Konsoula Z, Barile FA. 2012. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. Journal of Pharmacological and Toxicological Methods, 66(3):215-220.
    [31]
    Kraus TFJ, Globisch D, Wagner M, Eigenbrod S, Widmann D, Münzel M, Müller M, Pfaffeneder T, Hackner B, Feiden W, Schüller U, Carell T, Kretzschmar HA. 2012. Low values of 5-hydroxymethylcytosine (5hmC), the "sixth base," are associated with anaplasia in human brain tumors. International Journal of Cancer, 131(7):1577-1590.
    [32]
    Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929):929-930.
    [33]
    Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H, Nagae G, Yoshida H, Aburatani H, Koike K. 2012. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Science, 103(4):670-676.
    [34]
    Kwok JBJ. 2010. Role of epigenetics in Alzheimer's and Parkinson's disease. Epigenomics, 2(5):671-682.
    [35]
    Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, Bi R, Ji S, Ma YH, Nie WH, Lv LB, Yao YG, Zhao XD, Zheng P. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2):241-252.
    [36]
    Li WW, Liu M. 2011. Distribution of 5-hydroxymethylcytosine in different human tissues. Journal of Nucleic Acids, 2011:870726.
    [37]
    Lian CG, Xu YF, Ceol C, Wu FZ, Larson A, Dresser K, Xu WQ, Tan L, Hu YG, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang Y, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC Jr, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG. 2012. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell, 150(6):1135-1146.
    [38]
    Maekawa M, Watanabe Y. 2007. Epigenetics:relations to disease and laboratory findings. Current Medicinal Chemistry, 14(25):2642-2653.
    [39]
    Malzkorn B, Wolter M, Riemenschneider MJ, Reifenberger G. 2011. Unraveling the glioma epigenome-from molecular mechanisms to novel biomarkers and therapeutic targets. Brain Pathology, 21(6):619-632.
    [40]
    Marques SCF, Oliveira CR, Pereira CM, Outeiro TF. 2011. Epigenetics in neurodegeneration:a new layer of complexity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2):348-355.
    [41]
    Rockland KS, Lund JS. 1982. Widespread periodic intrinsic connections in the tree shrew visual cortex. Science, 215(4539):1532-1534.
    [42]
    Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. 2011. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 29(1):68-72.
    [43]
    Szulwach KE, Li XK, Li YJ, Song CX, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey AI, Vasanthakumar A, Godley LA, Chang Q, Cheng XD, He C, Jin P. 2011. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14(12):1607-1616.
    [44]
    Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H. 2010. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Research, 38(19):e181.
    [45]
    Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929):930-935.
    [46]
    Urdinguio RG, Sanchez-Mut JV, Esteller M. 2009. Epigenetic mechanisms in neurological diseases:genes, syndromes, and therapies. The Lancet Neurology, 8(11):1056-1072.
    [47]
    Wilson VL, Smith RA, Ma S, Cutler RG. 1987. Genomic 5-methyldeoxycytidine decreases with age. The Journal of Biological Chemistry, 262(21):9948-9951.
    [48]
    Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. 2012. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome:implication for using tree shrew as an alternative experimental animal to primates in biomedical research. Journal of Genetics and Genomics, 39(3):131-137.
    [49]
    Zhang L, Lu XY, Lu JY, Liang HH, Dai Q, Xu GL, Luo C, Jiang HL, He C. 2012. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chemical Biology, 8(4):328-330.
  • Relative Articles

    [1] Lan-Zhen YAN, Bin SUN, Long-Bao LYU, Yu-Hua MA, Jia-Qi CHEN, Qing LIN, Ping ZHENG, Xu-Dong ZHAO. Early embryonic development and transplantation in tree shrews. Zoological Research, 2016, 37(4): 252-258.  doi: 10.13918/j.issn.2095-8137.2016.4.252
    [2] Jian-Ping LI, Yun LIAO, Ying ZHANG, Jing-Jing WANG, Li-Chun WANG, Kai FENG, Qi-Han LI, Long-Ding LIU. Experimental infection of tree shrews(Tupaia belangeri) with Coxsackie virus A16. Zoological Research, 2014, 35(6): 485-491.  doi: 10.13918/j.issn.2095-8137.2014.6.485
    [3] Gui LI, Ren LAI, Gang DUAN, Long-Bao LYU, Zhi-Ye ZHANG, Huang LIU, Xun XIANG. Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews. Zoological Research, 2014, 35(6): 492-499.  doi: 10.13918/j.issn.2095-8137.2014.6.492
    [4] Ling XU, Yu FAN, Xue-Long JIANG, Yong-Gang YAO. Molecular evidence on the phylogenetic position of tree shrews. Zoological Research, 2013, 34(2): 70-76.  doi: 10.3724/SP.J.1141.2013.02070
    [5] Xiao-Yun WU, Yun-Hai LI, Qing CHANG, Lin-Qiang ZHANG, Sha-Sha LIAO, Bin LIANG. Streptozotocin induction of type 2 diabetes in tree shrew. Zoological Research, 2013, 34(2): 108-115.  doi: 10.3724/SP.J.1141.2013.02108
    [6] LI Sheng-An, LEE Wen-Hui, ZHANG Yun. Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents. Zoological Research, 2012, 33(1): 1-6.  doi: 10.3724/SP.J.1141.2012.01001
    [7] ZHANG Yuan-Xu, PING Shu-Huang, YANG Shi-Hua. Morphological characteristics and cryodamage of Chinese tree shrew (Tupaia belangeri chinensis) sperm. Zoological Research, 2012, 33(1): 29-36.  doi: 10.3724/SP.J.1141.2012.01029
    [8] SUN Yong-Mei, YANG Jian-Zhen, SUN Hua-Ying, MA Yuan-Ye, WANG Jian-Hong. Establishment of tree shrew chronic morphine dependent model. Zoological Research, 2012, 33(1): 14-18.  doi: 10.3724/SP.J.1141.2012.01014
    [9] WANG Jing, ZHOU Qi-Xin, TIAN Men, YANG Yue-Xiong, XU Lin. Tree shrew models: A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zoological Research, 2011, 32(1): 24-30.  doi: 10.3724/SP.J.1141.2011.01024
    [10] MA Xu-Tong, LI Fu-Lin, JIANG Hong-Jun, LI Wen-Hui, ZHANG Yun, DU Ting-Yi. Detection and comparison of physiological indexes in the wild and laboratory tree shrew. Zoological Research, 2011, 32(1): 4-10.  doi: 10.3724/SP.J.1141.2011.01004
    [11] ZHANG Ding, GAO Li, ZHANG Yuan-xu, SUN Li, FENG Yue, HE You-wen, XIA Xue-shan, ZHAN. Crucial Factors for de novo Establishment of Long-term Primary Culture of Tree Shrew Hepatocytes. Zoological Research, 2009, 30(1): 24-30.  doi: 10.3724/SP.J.1141.2009.01024
    [12] YANG Min, ZHANG Chi-yu, BEN Kun-long. Cloning and Sequence Analysis of Cyclin T1 cDNA from Tree Shrew (Tupaia belangeri). Zoological Research, 2003, 24(3): 205-210.
    [13] ZHANG Li, BEN Kun-Long. In vitro Infection of Tree Shrew Immunocytes with Human Immunodeficiency Virus Type Ⅰ. Zoological Research, 2001, 22(1): 33-40.
    [14] ZHENG Zi-xiu, ZHONG Jin-yan. Studies on The Lactate Dehydrogenase Isoenzymes of Tree Shrew (Tupaia belangeri chinensis) Tissues:An Electrophoretic Analysis on The Agarose Gel ). Zoological Research, 1991, 12(1): 85-91.
    [15] CAO Xiao-mei. Microscopic Structure of Ovary and Ovarian Activity of Different Seasons in Tree Shrew (Tupaia belangeri chinensis). Zoological Research, 1990, 11(1): 17-24.
    [16] YE Zhi-zhang, PENG Yen-zhang, PAN Ru-liang, WANG Hong. Arterial System in Chinese Tree Shrew (Tupaia belangeri chinensis). Zoological Research, 1990, 11(2): 131-138.
    [17] ZOU Ru-jin, TIAN Bao-pin, JI Wei-zhi, LI Rui-yuan. Research on The Piebaldism of Tree Shrews Breeding in The Captivity. Zoological Research, 1989, 10(zk): 68-78.
    [18] CAO Xiao-mei. Seasonal Changes in Spermatogenesis of Tree Shrew (Tupaia Belangeri Chinensis). Zoological Research, 1989, 10(1): 15-21.
    [19] MA Cai-xia, MA Kun, SHI Li-ming. Electron Microscopic Observations on The Synaptonemal Complex in Spermatocytes of The Tree Shrew (Tupaiabelangeri Chinensis). Zoological Research, 1989, 10(zk): 29-33.
    [20] ZHANG Ya-ping, ZHANG Bing, SHI Li-ming. Restriction Maps of Mitochondrial DNA of Slow Loris and Tree Shrew. Zoological Research, 1989, 10(zk): 79-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (572) PDF downloads(933) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return