Volume 37 Issue 5
Sep.  2016
Turn off MathJax
Article Contents

Yang XU, Si-Wei ZHU, Qing-Wei LI. Lamprey: a model for vertebrate evolutionary research. Zoological Research, 2016, 37(5): 263-269. doi: 10.13918/j.issn.2095-8137.2016.5.263
Citation: Yang XU, Si-Wei ZHU, Qing-Wei LI. Lamprey: a model for vertebrate evolutionary research. Zoological Research, 2016, 37(5): 263-269. doi: 10.13918/j.issn.2095-8137.2016.5.263

Lamprey: a model for vertebrate evolutionary research

doi: 10.13918/j.issn.2095-8137.2016.5.263
More Information
  • Corresponding author: Qing-Wei LI
  • Received Date: 2016-06-10
  • Rev Recd Date: 2016-08-03
  • Publish Date: 2016-09-18
  • Lampreys belong to the superclass Cyclostomata and represent the most ancient group of vertebrates. Existing for over 360 million years, they are known as living fossils due to their many evolutionally conserved features. They are not only a keystone species for studying the origin and evolution of vertebrates, but also one of the best models for researching vertebrate embryonic development and organ differentiation. From the perspective of genetic information, the lamprey genome remains primitive compared with that of other higher vertebrates, and possesses abundant functional genes. Through scientific and technological progress, scientists have conducted in-depth studies on the nervous, endocrine, and immune systems of lampreys. Such research has significance for understanding and revealing the origin and evolution of vertebrates, and could contribute to a greater understanding of human diseases and treatments. This review presents the current progress and significance of lamprey research.
  • 加载中
  • [1] Bajoghli B, Guo P, Aghaallaei N, Hirano M, Strohmeier C, McCurley N, Bockman DE, Schorpp M, Cooper MD, Boehm T. 2011. A thymus candidate in lampreys. Nature, 470(7332): 90-94.
    [2] Birceanu O, Sorensen LA, Henry M, McClelland GB, Wang YS, Wilkie MP. 2014. The effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on fuel stores and ion balance in a non-target fish, the rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 160: 30-41.
    [3] Biró Z, Hill RH, Grillner S. 2008. The activity of spinal commissural interneurons during fictive locomotion in the lamprey. Journal of Neurophysiology, 100(2): 716-722.
    [4] Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD. 2012. VLR-based adaptive immunity. Annual Review of Immunology, 30(1): 203-220.
    [5] Cinelli E, Mutolo D, Robertson B, Grillner S, Contini M, Pantaleo T, Bongianni F. 2014. GABAergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network. The Journal of Physiology, 592(8): 1823-1838.
    [6] Cooper MD, Alder MN. 2006. The evolution of adaptive immune systems. Cell, 124(4): 815-822.
    [7] Decatur WA, Hall JA, Smith JJ, Li WM, Sower SA. 2013. Insight from the lamprey genome: glimpsing early vertebrate development via neuroendocrine-associated genes and shared synteny of gonadotropin-releasing hormone (GnRH). General and Comparative Endocrinology, 192: 237-245.
    [8] Du Pasquier L. 2005. Meeting the demand for innate and adaptive immunities during evolution. Scandinavian Journal of Immunology, 62(S1): 39-48.
    [9] Ericsson J, Stephenson-Jones M, Pérez-Fernández J, Robertson B, Silberberg G, Grillner S. 2013. Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. Journal of Neuroscience, 33(18): 8045-8054.
    [10] Freamat M, Sower SA. 2010. Functional divergence of glycoprotein hormone receptors. Integrative and Comparative Biology, 50(1): 110-123.
    [11] Freamat M, Sower SA. 2013. Integrative neuro-endocrine pathways in the control of reproduction in lamprey: a brief review. Frontiers in Endocrinology, 4: 151.
    [12] Fujii T, Nakagawa H, Murakawa S. 1979. Immunity in lamprey II. Antigen-binding responses to sheep erythrocytes and hapten in the ammocoete. Developmental & Comparative Immunology, 3: 609-620.
    [13] Fuller MF, Tomé D. 2005. In vivo determination of amino acid bioavailability in humans and model animals. Journal of AOAC International, 88(3): 923-934.
    [14] Gess RW, Coates MI, Rubidge BS. 2006. A lamprey from the Devonian period of South Africa. Nature, 443(7114): 981-984.
    [15] Herrin BR, Alder MN, Roux KH, Sina C, Ehrhardt GRA, Boydston JA, Turnbough CL Jr, Cooper MD. 2008. Structure and specificity of lamprey monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 2040-2045.
    [16] Hirano M, Das S, Guo P, Cooper MD. 2011. The evolution of adaptive immunity in vertebrates. Advances in Immunology, 109: 125-157.
    [17] Holland LZ, Holland ND. 2001. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? Journal of Anatomy, 199(1-2): 85-98.
    [18] Janvier P. 2006. Palaeontology: modern look for ancient lamprey. Nature, 443(7114): 921-924.
    [19] Janvier P. 2008. Early jawless vertebrates and cyclostome origins. Zoological Science, 25(10): 1045-1056.
    [20] Kamali Sarvestani I, Kozlov A, Harischandra N, Grillner S, Ekeberg Ö. 2013. A computational model of visually guided locomotion in lamprey. Biological Cybernetics, 107(5): 497-512.
    [21] Kinkead R. 2009. Phylogenetic trends in respiratory rhythmogenesis: insights from ectothermic vertebrates. Respiratory Physiology & Neurobiology, 168(1-2): 39-48.
    [22] Kuratani S. 2005. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. Journal of Anatomy, 207(5): 489-499.
    [23] Kuratani S, Kuraku S, Murakami Y. 2002. Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis, 34(3): 175-183.
    [24] Manzon RG, Youson JH. 1999. Temperature and KClO4-induced metamorphosis in the sea lamprey (Petromyzon marinus). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 124(3): 253-257.
    [25] Ménard A, Grillner S. 2008. Diencephalic locomotor region in the lamprey-afferents and efferent control. Journal of Neurophysiology, 100(3): 1343-1353.
    [26] Murakami Y, Kuratani S. 2008. Brain segmentation and trigeminal projections in the lamprey; with reference to vertebrate brain evolution. Brain Research Bulletin, 75(2-4): 218-224.
    [27] Murakami Y, Watanabe A. 2009. Development of the central and peripheral nervous systems in the lamprey. Development, Growth & Differentiation, 51(3): 197-205.
    [28] Nikitina N, Bronner-Fraser M, Sauka-Spengler T. 2009. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harbor Protocols, doi:  10.1101/pdb.emo113.
    [29] Pancer Z, Amemiya CT, Ehrhardt GRA, Ceitlin J, Gartland GL, Cooper MD. 2004. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 430(6996): 174-180.
    [30] Pang Y, Wang S, Ba W, Li Q. 2015. Cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells. Springerplus, 4:569.
    [31] Piavis GW. 1961. Embryological stages in the sea lamprey and effect of temperature on development. U.S. Fish and Wildlife Service Fish Bulletin, 61: 111–143.
    [32] Potter IC, Robinson ES, Walton SM. 1968. The mitotic chromosomes of the lamprey Mordacia mordax (Agnatha: Petromyzonidae). Experientia, 24(9): 966-967.
    [33] Reese AM. 1900. Lampreys in captivity. Science, 11(275): 555.
    [34] Rétaux S, Kano S. 2010. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integrative and Comparative Biology, 50(1): 98-109.
    [35] Roberts BW, Didier W, Rai S, Johnson NS, Libants S, Yun SS, Close DA. 2014. Regulation of a putative corticosteroid, 17, 21-dihydroxypregn-4-ene, 3, 20-one, in sea lamprey, Petromyzon marinus. General and Comparative Endocrinology, 196: 17-25.
    [36] Saitoh K, Ménard A, Grillner S. 2007. Tectal control of locomotion, steering, and eye movements in lamprey. Journal of Neurophysiology, 97(4): 3093-3108.
    [37] Shimeld SM, Donoghue PCJ. 2012. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development, 139(12): 2091-2099.
    [38] Shintani S, Terzic J, Sato A, Saraga-Babic M, O'hUigin C, Tichy H, Klein J. 2000. Do lampreys have lymphocytes? The Spi evidence. Proceedings of the National Academy of Sciences of the United States of America, 97(13): 7417-7422.
    [39] Su P, Liu X, Han YL, Zheng Z, Liu G, Li J, Li QW. 2013. Identification and characterization of a novel IκB-ε-like gene from lamprey (Lampetra japonica) with a role in immune response. Fish & Shellfish Immunology, 35(4): 1146-1154.
    [40] Sun J, Liu X, Li QW. 2010. Molecular cloning, expression and antioxidant activity of a peroxiredoxin 2 homologue from Lampetra japonica. Fish & Shellfish Immunology, 28(5-6): 795-801.
    [41] Sun J, Wu Y, Wang JH, Ma F, Liu X, Li QW. 2008. Novel translationally controlled tumor protein homologue in the buccal gland secretion of Lampetra japonica. Biochimie, 90(11-12): 1760-1768.
    [42] Wang JH, Han XX, Yang HS, Lu L, Wu Y, Liu X, Guo RY, Zhang Y, Zhang YQ, Li QW. 2010. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie, 92(10): 1387-1396.
    [43] Wu FF, Zhao J, Chen LY, Liu X, Su P, Han YL, Feng B, Li QW. 2012. A novel BTK-like protein involved in immune response in Lethenteron japonicum. Immunology Letters, 146(1-2): 57-63.
    [44] Xiao R, Pang Y, Li QW. 2012. The buccal gland of Lampetra japonica is a source of diverse bioactive proteins. Biochimie, 94(5):1075-1079.
    [45] Youson JH, Sower SA. 2001. Theory on the evolutionary history of lamprey metamorphosis: role of reproductive and thyroid axes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(2-3): 337-345.
    [46] Zhao CH, Feng B, Cao Y, Xie P, Xu J, Pang Y, Liu X, Li QW. 2013. Identification and characterisation of ROS modulator 1 in Lampetra japonica. Fish & Shellfish Immunology, 35(2): 278-283.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(643) PDF downloads(1045) Cited by()

Related
Proportional views

Lamprey: a model for vertebrate evolutionary research

doi: 10.13918/j.issn.2095-8137.2016.5.263
    Corresponding author: Qing-Wei LI

Abstract: Lampreys belong to the superclass Cyclostomata and represent the most ancient group of vertebrates. Existing for over 360 million years, they are known as living fossils due to their many evolutionally conserved features. They are not only a keystone species for studying the origin and evolution of vertebrates, but also one of the best models for researching vertebrate embryonic development and organ differentiation. From the perspective of genetic information, the lamprey genome remains primitive compared with that of other higher vertebrates, and possesses abundant functional genes. Through scientific and technological progress, scientists have conducted in-depth studies on the nervous, endocrine, and immune systems of lampreys. Such research has significance for understanding and revealing the origin and evolution of vertebrates, and could contribute to a greater understanding of human diseases and treatments. This review presents the current progress and significance of lamprey research.

Yang XU, Si-Wei ZHU, Qing-Wei LI. Lamprey: a model for vertebrate evolutionary research. Zoological Research, 2016, 37(5): 263-269. doi: 10.13918/j.issn.2095-8137.2016.5.263
Citation: Yang XU, Si-Wei ZHU, Qing-Wei LI. Lamprey: a model for vertebrate evolutionary research. Zoological Research, 2016, 37(5): 263-269. doi: 10.13918/j.issn.2095-8137.2016.5.263
Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return