Volume 37 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
Xin LUO, Min LI, Bing SU. Application of the genome editing tool CRISPR/Cas9 in non-human primates. Zoological Research, 2016, 37(4): 214-219. doi: 10.13918/j.issn.2095-8137.2016.4.214
Citation: Xin LUO, Min LI, Bing SU. Application of the genome editing tool CRISPR/Cas9 in non-human primates. Zoological Research, 2016, 37(4): 214-219. doi: 10.13918/j.issn.2095-8137.2016.4.214

Application of the genome editing tool CRISPR/Cas9 in non-human primates

doi: 10.13918/j.issn.2095-8137.2016.4.214
Funds:  the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13010000) and the National Natural Science Foundation of China (31130051)
More Information
  • Corresponding author: Bing SU
  • Received Date: 2015-12-10
  • Rev Recd Date: 2016-05-20
  • Publish Date: 2016-07-18
  • In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.
  • loading
  • [1]
    Aida T, Chiyo K, Usami T, Ishikubo H, Imahashi R, Wada Y, Tanaka KF, Sakuma T, Yamamoto T, Tanaka K. 2015. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biology, 16: 87.
    Belmonte JCI, Callaway EM, Caddick SJ, Churchland P, Feng G, Homanics GE, Lee KF, Leopold DA, Miller CT, Mitchell JF, Mitalipov S, Moutri AR, Movshon JA, Okano H, Reynolds JH, Ringach D, Sejnowski TJ, Silva AC, Strick PL, Wu J, Zhang F. 2015. Brains, genes, and primates. Neuron, 86(3): 617-631.
    Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Ménard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C. 2013. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron, 80(2): 442-457.
    Blakemore C, Clark JM, Nevalainen T, Oberdorfer M, Sussman A. 2012. Implementing the 3Rs in neuroscience research: a reasoned approach. Neuron, 75(6): 948-950.
    Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891): 960-964.
    Caplan AL, Parent B, Shen M, Plunkett C. 2015. No time to waste-the ethical challenges created by CRISPR: CRISPR/Cas, being an efficient, simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells. EMBO Reports, 16(11): 1421-1426.
    Chan AWS, Chong KY, Martinovich C, Simerly C, Schatten G. 2001. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science, 291(5502): 309-312.
    Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, Tu ZC, Si CY, Wang H, Xing RX, Pu XQ, Yang SH, Li SH, Ji WZ, Li XJ. 2015. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 24(13): 3764-3774.
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 24(1): 132-141.
    Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 33(5): 543-548.
    Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819-823.
    Cyranoski D. 2016. Monkey kingdom-China is positioning itself as a world leader in primate research. Nature, 532(7599): 300-302.
    Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096.
    Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32(3): 279-284.
    Guo XY, Li XJ. 2015. Targeted genome editing in primate embryos. Cell Research, 25(7): 767-768.
    Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature Biotechnology, 33(9): 985-989.
    Holdren JP, Shelanski H, Vetter D, Goldfuss C. 2015. Improving transparency and ensuring continued safety in biotechnology. Office of Science and Technology Policy.
    Kawano F, Suzuki H, Furuya A, Sato M. 2015. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nature Communications, 6: 6256.
    Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. 2010. Rapid blue-light-mediated induction of protein interactions in living cells. Nature Methods, 7(12): 973-975.
    Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6): 1012-1019.
    Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature, 500(7463): 472-476.
    Koo T, Lee J, Kim JS. 2015. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Molecules and Cells, 38(6): 475-481.
    Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. 2015. Don’t edit the human germ line. Nature, 519(7544): 410-411.
    Liang PP, Xu YW, Zhang XY, Ding CH, Huang R, Zhang Z, Lv J, Xie XW, Chen YX, Li YJ, Sun Y, Bai YF, Zhou SY, Ma WB, Zhou CQ, Huang JJ. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 6(5): 363-372.
    Liu HT, Yu XH, Li KW, Klejnot J, Yang HY, Lisiero D, Lin CT. 2008. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 322(5907): 1535-1539.
    Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology, 33(5): 538-542.
    Nihongaki Y, Kawano F, Nakajima T, Sato M. 2015a. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology, 33(7): 755-760.
    Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. 2015b. CRISPR-Cas9-based photoactivatable transcription system. Chemistry & Biology, 22(2): 169-174.
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156(5): 935-949.
    Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H, Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ, Sha JH. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4): 836-843.
    Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods, 10(10): 973-976.
    Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 24(6): 1020-1027.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11): 2281-2308.
    Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, Cherifi Y, Menoret S, Fontaniere S, de Crozé N, Fraichard A, Sohm F, Anegon I, Concordet JP, Giovannangeli C. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Reports, 14(9): 2263-2272.
    Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4): 347-355.
    Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, Ha SJ, Kim CH, Lee HW, Kim JS. 2014. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research, 24(1): 125-131.
    Wan HF, Feng CJ, Teng F, Yang SH, Hu BY, Niu YY, Xiang AP, Fang WZ, Ji WZ, Li W, Zhao XY, Zhou Q. 2015. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Research, 25(2): 258-261.
    Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4): 910-918.
    Yang H, Wang HY, Shivalila CS, Cheng AW, Shi LY, Jaenisch R. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6): 1370-1379.
    Yin H, Xue W, Chen SD, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6): 551-553.
    Yu C, Liu YX, Ma TH, Liu K, Xu SH, Zhang Y, Liu HL, Russa ML, Xie M, Ding S, Qi LS. 2015. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 16(2): 142-147.
    Zhang XL, Pang W, Hu XT, Li JL, Yao YG, Zheng YT. 2014. Experimental primates and non-human primate (NHP) models of human diseases in China: current status and progress. Zoological Research, 2014, 35(6): 447-464.
    Zhao P, Zhang Z, Lv XY, Zhao X, Suehiro SJ, Jiang YN, Wang XQ, Mitani SH, Gong HP, Xue D. 2016. One-step homozygosity in precise gene editing by an improved CRISPR/Cas9 system. Cell Research, 26(5): 633-636.
    Zhou XY, Wang LL, Du Y, Xie F, Li L, Liu Y, Liu CH, Wang SQ, Zhang SB, Huang XX, Wang Y, Wei H. 2016. Efficient generation of gene modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Human Mutation, 37(1): 110-118.
    Zuris JA, Thompson DB, Shu YL, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33(1): 73-80.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1446) PDF downloads(1995) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint