Volume 37 Issue 4
Jul.  2016
Turn off MathJax
Article Contents

Ming SHAO, Tian-Rui XU, Ce-Shi CHEN. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37(4): 191-204. doi: 10.13918/j.issn.2095-8137.2016.4.191
Citation: Ming SHAO, Tian-Rui XU, Ce-Shi CHEN. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37(4): 191-204. doi: 10.13918/j.issn.2095-8137.2016.4.191

The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models

doi: 10.13918/j.issn.2095-8137.2016.4.191
Funds:  This work was partially supported by the National Natural Science Foundation of China (81202110, 81120108019, U1132605 and 81325016)
More Information
  • Corresponding author: Ce-Shi CHEN
  • Received Date: 2015-11-10
  • Rev Recd Date: 2016-01-20
  • Publish Date: 2016-07-18
  • Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine.
  • 加载中
  • [1] Anders C, Niewoehner O, Jinek M. 2015. In vitro reconstitution and crystallization of Cas9 endonuclease bound to a guide RNA and a DNA target. Methods in Enzymology, 558:515-537.
    [2] Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513(7519):569-573.
    [3] Arbab M, Srinivasan S, Hashimoto T, Geijsen N, Sherwood RI. 2015. Cloning-free CRISPR. Stem Cell Reports, 5(5):908-917.
    [4] Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature, 487(7408):482-485.
    [5] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819):1709-1712.
    [6] Bassett AR, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Reports, 4(1):220-228.
    [7] Bikard D, Jiang WY, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41(15):7429-7437.
    [8] Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrach-romosomal origin. Microbiology, 151(Pt 8):2551-2561.
    [9] Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39(12):e82.
    [10] Chen FJ, Wang Y, Yuan YL, Zhang W, Ren ZJ, Jin Y, Liu XR, Xiong Q, Chen Q, Zhang ML, Li XK, Zhao LH, Li Z, Wu ZQ, Zhang YF, Hu FF, Huang J, Li RF, Dai YF. 2015a. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. Journal of Genetics and Genomics, 42(8):437-444.
    [11] Chen SD, Sanjana NE, Zheng KJ, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. 2015b. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160(6):1246-1260.
    [12] Chen XY, Li M, Feng XZ, Guang SH. 2015c. Targeted chromosomal translocations and essential gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Genetics, 201(4):1295-1306.
    [13] Chen XY, Xu F, Zhu CM, Ji JJ, Zhou XF, Feng XZ, Guang SH. 2014. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Cae-norhabditis elegans. Scientific Reports, 4:7581.
    [14] Chen YC, Niu YY, Li YJ, Ai ZY, Kang Y, Shi H, Xiang Z, Yang ZH, Tan T, Si W, Li W, Xia XS, Zhou Q, Ji WZ, Li TQ. 2015d. Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell, 17(1):116-124.
    [15] Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, Tu ZC, Si CY, Wang H, Xing RX, Pu XQ, Yang SH, Li SH, Ji WZ, Li XJ. 2015e. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 24(13):3764-3774.
    [16] Chen YJ, Cao JY, Xiong M, Petersen AJ, Dong Y, Tao YL, Huang CT, Du ZW, Zhang SC. 2015f. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell, 17(2):233-244.
    [17] Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Grüner BM, Chuang CH, Caswell DR, Zeng H, Chu P, Kim GE, Carpizo DR, Kim SK, Winslow MM. 2015. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes & Development, 29(14):1576-1585.
    [18] Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnol-ogy, 33(5):543-548.
    [19] Chylinski K, Makarova KS, Charpentier E, Koonin EV. 2014. Classification and evolution of type Ⅱ CRISPR-Cas systems. Nucleic Acids Research, 42(10):6091-6105.
    [20] Cong L, Zhang F. 2015. Genome engineering using CRISPR-Cas9 system. In:Pruett-Miller SM. Chromosomal Mutagenesis. New York:Springer, 197-217.
    [21] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121):819-823.
    [22] Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao YJ, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 471(7340):602-607.
    [23] DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM. 2015. Safeguard-ing CRISPR-Cas9 gene drives in yeast. Nature Biotechnology, 33(12):1250-1255.
    [24] Dow LE. 2015. Modeling disease in vivo with CRISPR/Cas9. Trends in Molecular Medicine, 21(10):609-621.
    [25] Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Reports, 3:2510.
    [26] Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, Hahn WC, Jackson AL, Kiger A, Linsley PS, Lum L, Ma Y, Mathey-Prévôt B, Root DE, Sabatini DM, Taipale J, Perrimon N, Bernards R. 2006. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods, 3(10):777-779.
    [27] Flynn R, Grundmann A, Renz P, Hänseler W, James WS, Cowley SA, Moore MD. 2015. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Experi-mental Hematology, 43(10):838-848.e3.
    [28] Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9):822-826.
    [29] Fujii W, Kawasaki K, Sugiura K, Naito K. 2013. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Research, 41(20):e187.
    [30] Gaj T, Gersbach CA, Barbas Ⅲ CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7):397-405.
    [31] Garneau JE, Dupuis M, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320):67-71.
    [32] Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39):E2579-E2586.
    [33] Ge GZ, Xia HJ, He BL, Zhang HL, Liu WJ, Shao M, Wang CY, Xiao J, Ge F, Li FB, Li Y, Chen CS. 2016. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution. International Journal of Cancer, 138(3):642-651.
    [34] Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui XX, Meng XD, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R. 2009. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 325(5939):433.
    [35] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2):442-451.
    [36] Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen YW, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 159(3):647-661.
    [37] Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. 2015. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Human Gene Therapy, 26(7):443-451.
    [38] Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4):1029-1035.
    [39] Guilinger JP, Thompson DB, Liu DR. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 32(6):577-582.
    [40] Hashimoto M, Takemoto T. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Scientific Reports, 5:11315.
    [41] Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nature Biotechnology, 32(9):941-946.
    [42] Heigwer F, Kerr G, Boutros M. 2014. E-CRISP:fast CRISPR target site identification. Nature Methods, 11(2):122-123.
    [43] Hendriks WT, Jiang X, Daheron L, Cowan CA. 2007. TALEN-and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. In:Current Protocols in Stem Cell Biology. John Wiley & Sons, Inc.
    [44] Honda A, Hirose M, Sankai T, Yasmin L, Yuzawa K, Honsho K, Izu H, Iguchi A, Ikawa M, Ogura A. 2015. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Experimental Animals, 64(1):31-37.
    [45] Housden BE, Valvezan AJ, Kelley C, Perrimon N. 2015. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Science Signaling, 8(393):RS9.
    [46] Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li YQ, Fine EJ, Wu XB, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9):827-832.
    [47] Hu WH, Kaminski R, Yang F, Zhang YG, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo XM, Khalili K. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 111(31):11461-11466.
    [48] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12):5429-5433.
    [49] Jackson AL, Linsley PS. 2010. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Reviews Drug Discovery, 9(1):57-67.
    [50] Jansen R, van Embden JDA, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6):1565-1575.
    [51] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-821.
    [52] Jinek M, Jiang FG, Taylor DW, Sternberg SH, Kaya E, Ma EB, Anders C, Hauer M, Zhou KH, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343(6176):1247997.
    [53] Kamath RS, Ahringer J. 2003. Genome-wide RNAi screening in Caenor-habditis elegans. Methods, 30(4):313-321.
    [54] Kampmann M, Horlbeck MA, Chen YW, Tsai JC, Bassik MC, Gilbert LA, Villalta JE, Kwon SC, Chang H, Kim VN, Weissman JS. 2015. Next-generation libraries for robust RNA interference-based genome-wide screens. Proceedings of the National Academy of Sciences of the United States of America, 112(26):E3384-E3391.
    [55] Kang Y, Zheng B, Shen B, Chen YC, Wang L, Wang JY, Niu YY, Cui YQ, Zhou JK, Wang H, Guo XJ, Hu B, Zhou Q, Sha JH, Ji WZ, Huang XX. 2015. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH. Human Molecular Genetics, 24(25):7255-7264.
    [56] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536):583-588.
    [57] Lagutina IV, Valentine V, Picchione F, Harwood F, Valentine MB, Villarejo-Balcells B, Carvajal JJ, Grosveld GC, Ebi KL. 2015. Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genetics, 11(2):e1004951.
    [58] Lee NCO, Larionov V, Kouprina N. 2015. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Research, 43(8):e55.
    [59] Li C, Guan XM, Du T, Jin W, Wu B, Liu YL, Wang P, Hu BD, Griffin GE, Shattock RJ, Hu QX. 2015a. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. Journal of General Virology, 96(8):2381-2393.
    [60] Li J, Zhang BB, Ren YG, Gu SY, Xiang YH, Du JL. 2015b. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Research, 25(5):634-637.
    [61] Liang PP, Xu YW, Zhang XY, Ding CH, Huang R, Zhang Z, Lv J, Xie XW, Chen YX, Li YJ, Sun Y, Bai YF, Zhou SY, Ma WB, Zhou CQ, Huang JJ. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 6(5):363-372.
    [62] Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC. 2015. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 6:6413.
    [63] Lin SL, Ewen-Campen B, Ni XC, Housden BE, Perrimon N. 2015. In vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics, 201(2):433-442.
    [64] Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. 2014. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV tem-plates in vivo. Molecular Therapy Nucleic Acids, 3(8):e186.
    [65] Liu J, Gaj T, Yang YF, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS, Barbas CF. 2015. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nature Protocols, 10(11):1842-1859.
    [66] Long CZ, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. 2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science, 345(6201):1184-1188.
    [67] Long LJ, Guo H, Yao D, Xiong K, Li YJ, Liu PP, Zhu ZY, Liu D. 2015. Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio. Cell Research, 25(5):638-641.
    [68] Lu XJ, Xue HY, Ke ZP, Chen JL, Ji LJ. 2015. CRISPR-Cas9:a new and promising player in gene therapy. Journal of Medical Genetics, 52(5):289-296.
    [69] MacPherson CR, Scherf A. 2015. Flexible guide-RNA design for CRISPR applications using Protospacer Workbench. Nature Biotechnology, 33(8):805-806.
    [70] Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006. A putative RNA-interference-based immune system in prokaryotes:computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1:7.
    [71] Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. 2011. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 9(6):467-477.
    [72] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science, 339(6121):823-826.
    [73] Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJA, Daran JMG. 2015. CRISPR/Cas9:a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Research, 15(2):fov004.
    [74] Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322(5909):1843-1845.
    [75] Mojica FJM, Díez-Villaseñor C, Soria E, Juez G. 2000. Biological signific-ance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1):244-246.
    [76] Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Interven-ing sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2):174-182.
    [77] Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. 2014. CHOPCHOP:a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 42(Web Server issue):W401-W407.
    [78] Mou HW, Kennedy Z, Anderson DG, Yin H, Xue W. 2015. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Medicine, 7(1):53.
    [79] Naito Y, Hino K, Bono H, Ui-Tei K. 2015. CRISPRdirect:software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31(7):1120-1123.
    [80] Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, Naito K, Yamanouchi K, Nishihara M. 2014. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Scientific Reports, 4:5635.
    [81] Nihongaki Y, Kawano F, Nakajima T, Sato M. 2015. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology, 33(7):755-760.
    [82] Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156(5):935-949.
    [83] Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li YQ, Kurabayashi A, Ishitani R, Zhang F, Nureki O. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell, 162(5):1113-1126.
    [84] Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H, Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ, Sha JH. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4):836-843.
    [85] Ohtori S, Inoue G, Miyagi M, Takahashi K. 2015. Pathomechanisms of discogenic low back pain in humans and animal models. The Spine Journal, 15(6):1347-1355.
    [86] Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. 2015. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nature Communications, 6:6244.
    [87] Park J, Bae S, Kim JS. 2015. Cas-Designer:a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics, 31(24):4014-4016.
    [88] Platt RJ, Chen SD, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng GP, Sharp PA, Zhang F. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 159(2):440-455.
    [89] Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151(Pt 3):653-663.
    [90] Ramanan V, Shlomai A, Cox DBT, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. 2015. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific Reports, 5:10833.
    [91] Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013a. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11):2281-2308.
    [92] Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013b. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6):1380-1389.
    [93] Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu XB, Makarova KS, Koonin EV, Sharp PA, Zhang F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546):186-191.
    [94] Ren XJ, Yang ZH, Xu J, Sun J, Mao DC, Hu YH, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ. 2014. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Reports, 9(3):1151-1162.
    [95] Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DYR. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature, 524(7564):230-233.
    [96] Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. 2014. Multip-lex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Scientific Reports, 4:5400.
    [97] Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W, Jacks T. 2014. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature, 516(7531):428-431.
    [98] Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D. 2007. Zinc Finger Targeter (ZiFiT):an engineered zinc finger/target site design tool. Nucleic Acids Research, 35(Web Server issue):W599-W605.
    [99] Selle K, Klaenhammer TR, Barrangou R. 2015. CRISPR-based screening of genomic island excision events in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 112(26):8076-8081.
    [100] Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166):84-87.
    [101] Shen B, Zhang J, Wu HY, Wang JY, Ma K, Li Z, Zhang XG, Zhang PM, Huang XX. 2013. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 23(5):720-723.
    [102] Shi JW, Wang E, Milazzo JP, Wang ZH, Kinney JB, Vakoc CR. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nature Biotechnology, 33(6):661-667.
    [103] Slaymaker IM, Gao LY, Zetsche B, Scott DA, Yan WX, Zhang F. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268):84-88.
    [104] Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507(7490):62-67.
    [105] Stewart AM, Kalueff AV. 2015. Developing better and more valid animal models of brain disorders. Behavioural Brain Research, 276:28-31.
    [106] Takahashi G, Gurumurthy CB, Wada K, Miura H, Sato M, Ohtsuka M. 2015. GONAD:Genome-editing via Oviductal Nucleic Acids Delivery system:a novel microinjection independent genome engineering method in mice. Scientific Reports, 5:11406.
    [107] Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS. 2002. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mechanisms of Development, 118(1-2):91-98.
    [108] Tomaszewski JP, Gosain AK, Topczewska JM. 2015. Abstract 77:modeling pfeiffer syndrome in zebrafish by CRISPR-targeted homologous recombination. Plastic and Reconstructive Surgery, 135(5S):59.
    [109] Tsai CS, Kong Ⅱ, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS. 2015. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnology and Bioengineering, 112(11):2406-2411.
    [110] Tsuchiya Y, Minami Y, Umemura Y, Watanabe H, Ono D, Nakamura W, Takahashi T, Honma S, Kondoh G, Matsuishi T, Yagita K. 2015. Disruption of MeCP2 attenuates circadian rhythm in CRISPR/Cas9-based Rett syndrome model mouse. Genes to Cells, 20(12):992-1005.
    [111] Upadhyay SK, Kumar J, Alok A, Tuli R. 2013. RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda), 3(12):2233-2238.
    [112] Varshney GK, Pei WH, LaFave MC, Idol J, Xu LS, Gallardo V, Carrington B, Bishop K, Jones M, Li MY, Harper U, Huang SC, Prakash A, Chen WB, Sood R, Ledin J, Burgess SM. 2015. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research, 25(7):1030-1042.
    [113] Vu V, Verster AJ, Schertzberg M, Chuluunbaatar T, Spensley M, Pajkic D, Hart GT, Moffat J, Fraser AG. 2015. Natural variation in gene expression modulates the severity of mutant phenotypes. Cell, 162(2):391-402.
    [114] Wang D, Mou HW, Li SY, Li YX, Hough S, Tran K, Li J, Yin H, Anderson DG, Sontheimer EJ, Weng ZP, Gao GP, Xue W. 2015a. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Human Gene Therapy, 26(7):432-442.
    [115] Wang FQ, Shi ZY, Cui Y, Guo XG, Shi YB, Chen YL. 2015b. Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell & Bioscience, 5:15.
    [116] Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4):910-918.
    [117] Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166):80-84.
    [118] Wang Y, Du YN, Shen B, Zhou XY, Li J, Liu Y, Wang JY, Zhou JK, Hu B, Kang NN, Gao JM, Yu LQ, Huang XX, Wei H. 2015c. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Scientific Reports, 5:8256.
    [119] Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS. 2013. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13(6):659-662.
    [120] Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. 2015. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases (RFNs) directed by truncated gRNAs for highly specific genome editing. Human Gene Therapy, 26(7):425-431.
    [121] Xia HJ, He BL, Wang CY, Zhang HL, Ge GZ, Zhang YX, Lv LB, Jiao JL, Chen CS. 2014. PTEN/PIK3CA genes are frequently mutated in spontane-ous and medroxyprogesterone acetate-accelerated 7, 12-dimethylbenz (a)anthracene-induced mammary tumours of tree shrews. European Journal of Cancer, 50(18):3230-3242.
    [122] Xie SS, Shen B, Zhang CB, Huang XX, Zhang YL, Khodursky AB. 2014. sgRNAcas9:a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One, 9(6):e100448.
    [123] Xu L, Zhang Y, Liang B, Lü LB, Chen CS, Chen YB, Zhou JM, Yao YG. 2013. Tree shrews under the spot light:emerging model of human diseases. Zoological Research, 34(2):59-69. (in Chinese)
    [124] Xu L, Park KH, Zhao LX, Xu J, El Refaey M, Gao YD, Zhu H, Ma JJ, Han RZ. 2015a. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Molecular Therapy, doi:10.1038/mt. 2015.192.
    [125] Xu RF, Li H, Qin RY, Wang L, Li L, Wei PC, Yang JB. 2014. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 7(1):5.
    [126] Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB. 2015b. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Scientific Reports, 5:11491.
    [127] Xue W, Chen SD, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai WX, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 514(7522):380-384.
    [128] Yang LH, Güell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu WH, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 350(6264):1101-1104.
    [129] Yu J, Wu H, Wen Y, Liu YJ, Zhou T, Ni BX, Lin Y, Dong J, Zhou ZM, Hu ZB, Guo XJ, Sha JH, Tong C. 2015. Identification of seven genes essential for male fertility through a genome-wide association study of non-obstructive azoospermia and RNA interference-mediated large-scale functional screening in Drosophila. Human Molecular Genetics, 24(5):1493-1503.
    [130] Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3):759-771.
    [131] Zhang H, Zhang JS, Wei PL, Zhang BT, Gou F, Feng ZY, Mao YF, Yang L, Zhang H, Xu NF, Zhu JK. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6):797-807.
    [132] Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B, Largaespada D, Roussel MF, Korshunov A, Reifenberger G, Pfister SM, Lichter P, Kawauchi D, Gronych J. 2015. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 6:7391.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1549) PDF downloads(2673) Cited by()

Related
Proportional views

The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models

doi: 10.13918/j.issn.2095-8137.2016.4.191
Funds:  This work was partially supported by the National Natural Science Foundation of China (81202110, 81120108019, U1132605 and 81325016)
    Corresponding author: Ce-Shi CHEN

Abstract: Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine.

Ming SHAO, Tian-Rui XU, Ce-Shi CHEN. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37(4): 191-204. doi: 10.13918/j.issn.2095-8137.2016.4.191
Citation: Ming SHAO, Tian-Rui XU, Ce-Shi CHEN. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37(4): 191-204. doi: 10.13918/j.issn.2095-8137.2016.4.191
Reference (132)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return