Volume 35 Issue 5
Sep.  2014
Turn off MathJax
Article Contents
Peng LI, Cai-Hong JIN, San JIANG, Miao-Miao LI, Zi-Lu WANG, Hui ZHU, Cui-Yun CHEN, Tian-Miao HUA. Effects of surround suppression on response adaptation of V1 neurons to visual stimuli. Zoological Research, 2014, 35(5): 411-419. doi: 10.13918/j.issn.2095-8137.2014.5.411
Citation: Peng LI, Cai-Hong JIN, San JIANG, Miao-Miao LI, Zi-Lu WANG, Hui ZHU, Cui-Yun CHEN, Tian-Miao HUA. Effects of surround suppression on response adaptation of V1 neurons to visual stimuli. Zoological Research, 2014, 35(5): 411-419. doi: 10.13918/j.issn.2095-8137.2014.5.411

Effects of surround suppression on response adaptation of V1 neurons to visual stimuli

doi: 10.13918/j.issn.2095-8137.2014.5.411
Funds:  This research was supported by the National Natural Science Foundation of China (31171082), the Natural Science Foundation of Anhui Province (070413138), the Key Research Foundation of the Anhui Provincial Education Department (KJ2009A167), the Foundation of Key Laboratories of Anhui Province and the Anhui Provincial Education Department
More Information
  • Corresponding author: Tian-Miao HUA
  • Received Date: 2014-02-20
  • Rev Recd Date: 2014-04-28
  • Publish Date: 2014-09-08
  • The influence of intracortical inhibition on the response adaptation of visual cortical neurons remains in debate. To clarify this issue, in the present study the influence of surround suppression evoked through the local inhibitory interneurons on the adaptation effects of neurons in the primary visual cortex (V1) were observed. Moreover, the adaptations of V1 neurons to both the high-contrast visual stimuli presented in the classical receptive field (CRF) and to the costimulation presented in the CRF and the surrounding nonclassical receptive field (nCRF) were compared. The intensities of surround suppression were modulated with different sized grating stimuli. The results showed that the response adaptation of V1 neurons decreased significantly with the increase of surround suppression and this adaptation decrease was due to the reduction of the initial response of V1 neurons to visual stimuli. However, the plateau response during adaptation showed no significant changes. These findings indicate that the adaptation effects of V1 neurons may not be directly affected by surround suppression, but may be dynamically regulated by a negative feedback network and be finely adjusted by its initial spiking response to stimulus. This adaptive regulation is not only energy efficient for the central nervous system, but also beneficially acts to maintain the homeostasis of neuronal response to long-presenting visual signals.
  • loading
  • [1]
    Abbonizio G, Langley K, Clifford CW. 2002. Contrast adaptation may enhance contrast discrimination. Spatial Vision, 16(1): 45-58.
    Akasaki T, Sato H, Yoshimura Y, Ozeki H, Shimegi S. 2002. Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neuroscience Research, 43(3): 207-220.
    Bair W, Cavanaugh JR, Movshon JA. 2003. Time course and time-distance relationships for surround suppression in macaque V1 neurons. Journal of Neuroscience, 23(20): 7690-7701.
    Benucci A, Saleem AB, Carandini M. 2013. Adaptation maintains population homeostasis in primary visual cortex. Nature Neuroscience, 16(6): 724-729.
    Bishop PO, Kozak W, Vakkur GJ. 1962. Some quantitative aspects of the cat's eye: axis and plane of reference, visual field co-ordinates and optics. Journal of Physiology, 163(3): 466-502.
    Brainard DH. 1997. The psychophysics toolbox. Spatial Vision, 10(4): 433-436.
    Brown SP, Masland RH. 2001. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nature Neuroscience, 4(1): 44-51.
    Carandini M. 2000. Visual cortex: Fatigue and adaptation. Current Biology, 10(16): R605-607.
    Carandini M, Ferster D. 1997. A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science, 276(5314): 949-952.
    Cavanaugh JR, Bair W, Movshon JA. 2002a. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88(5): 2530-2546.
    Cavanaugh JR, Bair W, Movshon JA. 2002b. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology, 88(5): 2547-2556.
    Chung S, Li X, Nelson SB. 2002. Short-Term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in Vivo. Neuron, 34(3): 437-446.
    Clifford CW, Webster MA, Stanley GB, Stocker AA, Kohn A, Sharpee TO, Schwartz O. 2007. Visual adaptation: neural, psychological and computational aspects. Vision Research, 47(25): 3125-3131.
    Compte A, Wang XJ. 2006. Tuning curve shift by attention modulation in cortical neurons: a computational study of its mechanisms. Cerebral Cortex, 16(6): 761-778.
    Dao DY, Lu ZL, Dosher BA. 2006. Adaptation to sine-wave gratings selectively reduces the contrast gain of the adapted stimuli. Journal of Vision, 6(7): 739-759.
    DeBruyn EJ, Bonds AB. 1986. Contrast adaptation in cat visual cortex is not mediated by GABA. Brain Research, 383(1-2): 339-342.
    Dragoi V, Sharma J, Miller EK, Sur M. 2002. Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nature Neuroscience, 5(9): 883-891.
    Duong T, Freeman RD. 2007. Spatial frequency-specific contrast adaptation originates in the primary visual cortex. Journal of Neurophysiology, 98(1): 187-195.
    Durand S, Freeman TC, Carandini M. 2007. Temporal properties of surround suppression in cat primary visual cortex. Vision Neuroscience, 24(5): 679-690.
    Ego-Stengel V, Bringuier V, Shulz DE. 2002. Noradrenergic modulation of functional selectivity in the cat visual cortex: an in vivo extracellular and intracellular study. Neuroscience, 111(2): 275-289.
    Fu Y, Wang XS, Wang YC, Zhang J, Liang Z, Zhou YF, Ma YY. 2010. The effects of aging on the strength of surround suppression of receptive field of V1 cells in monkeys. Neuroscience, 169(2): 874-881.
    Gepshtein S, Lesmes LA, Albright TD. 2013. Sensory adaptation as optimal resource allocation. Proceedings of the National Academy of Sciences of the United States of America, 110(11): 4368-4373.
    Greenlee MW, Heitger F. 1988. The functional role of contrast adaptation. Vision Research, 28(7): 791-797.
    Haider B, Krause MR, Duque A, Yu Y, Touryan J, Mazer JA, McCormick DA. 2010. Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron, 65(1): 107-121.
    Hosoya T, Baccus SA, Meister M. 2005. Dynamic predictive coding by the retina. Nature, 436(7047): 71-77.
    Howarth CM, Vorobyov V, Sengpiel F. 2009. Interocular transfer of adaptation in the primary visual cortex. Cerebral Cortex, 19(8): 1835-1843.
    Hua T, Bao P, Huang CB, Wang Z, Xu J, Zhou Y, Lu ZL. 2010. Perceptual learning improves contrast sensitivity of V1 neurons in cats. Current Biology, 20(10): 887-894.
    Hua TM, Kao CC, Sun QY, Li XR, Zhou YF. 2008. Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Research Bulletin, 75(1): 119-125.
    Hua TM, Li GZ, Tang CH, Wang ZH, Chang S. 2009. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats. Neuroscience Letters, 451(1): 25-28.
    Hua TM, Li XR, He LH, Zhou YF, Wang YC, Leventhal AG. 2006. Functional degradation of visual cortical cells in old cats. Neurobiology of Aging, 27(1): 155-162.
    Kohn A. 2007. Visual adaptation: physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97(5): 3155-3164.
    Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y. 2003. GABA and its agonists improved visual cortical function in senescent monkeys. Science, 300(5620): 812-815.
    Levy M, Fournier J, Fregnac Y. 2013. The role of delayed suppression in slow and fast contrast adaptation in V1 simple cells. Journal of Neuroscience, 33(15): 6388-6400.
    Li B, Freeman RD. 2011. Neurometabolic coupling differs for suppression within and beyond the classical receptive field in visual cortex. Journal of Physiology, 589(Pt 13): 3175-3190.
    Liu RL, Wang K, Meng JJ, Hua TM, Liang Z, Xi MM. 2013. Adaptation to visual stimulation modifies the burst firing property of V1 neurons. Zoological Research, 34(3): E101-E108.
    Määttänen LM, Koenderink JJ. 1991. Contrast adaptation and contrast gain control. Experimental Brain Research, 87(1): 205-212.
    Maffei L, Fiorentini A, Bisti S. 1973. Neural correlate of perceptual adaptation to gratings. Science, 182(4116): 1036-1038.
    Marlin SG, Hasan SJ, Cynader MS. 1988. Direction-selective adaptation in simple and complex cells in cat striate cortex. Journal of Neurophysiology, 59(4): 1314-1330.
    McLean J, Palmer LA. 1996. Contrast adaptation and excitatory amino acid receptors in cat striate cortex. Visual Neuroscience, 13(6): 1069-1087.
    Meng JJ, Liu RL, Wang K, Hua TM, Lu ZL, Xi MM. 2013. Neural correlates of stimulus spatial frequency-dependent contrast detection. Experimental Brain Research, 225(3): 377-385.
    Movshon JA, Lennie P. 1979. Pattern-selective adaptation in visual cortical neurones. Nature, 278(5707): 850-852.
    Nowak LG, Sanchez-Vives MV, McCormick DA. 2005. Role of synaptic and intrinsic membrane properties in short-term receptive field dynamics in cat area 17. Journal of Neuroscience, 25(7): 1866-1880.
    Pelli DG. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4): 437-442.
    Reig R, Gallego R, Nowak LG, Sanchez-Vives MV. 2006. Impact of cortical network activity on short-term synaptic depression. Cerebral Cortex, 16(5): 688-695.
    Sanchez-Vives MV, Nowak LG, McCormick DA. 2000a. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. Journal of Neuroscience, 20(11): 4286-4299.
    Sanchez-Vives MV, Nowak LG, McCormick DA. 2000b. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. Journal of Neuroscience, 20(11): 4267-4285.
    Sekuler R, Pantle A. 1967. A model for after-effects of seen movement. Vision Research, 7(5): 427-439.
    Series P, Lorenceau J, Fregnac Y. 2003. The "silent" surround of V1 receptive fields: theory and experiments. Journal of Physiology, 97(4-6): 453-474.
    Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD. 2006. Adaptive filtering enhances information transmission in visual cortex. Nature, 439(7079): 936-942.
    Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M. 1997. Adaptation of retinal processing to image contrast and spatial scale. Nature, 386(6620): 69-73.
    Smith AT, Hammond P. 1985. The pattern specificity of velocity aftereffects. Experimental Brain Research, 60(1): 71-78.
    Smith MA, Bair W, Movshon JA. 2006. Dynamics of suppression in macaque primary visual cortex. Journal of Neuroscience, 26(18): 4826-4834.
    Tailby C, Solomon SG, Peirce JW, Metha AB. 2007. Two expressions of "surround suppression" in V1 that arise independent of cortical mechanisms of suppression. Visual Neuroscience, 24(1): 99-109.
    Teich AF, Qian N. 2003. Learning and adaptation in a recurrent model of V1 orientation selectivity. Journal of Neurophysiology, 89(4): 2086-2100.
    Vidyasagar TR. 1990. Pattern adaptation in cat visual cortex is a co-operative phenomenon. Neuroscience, 36(1): 175-179.
    Walker GA, Ohzawa I, Freeman RD. 2000. Suppression outside the classical cortical receptive field. Visual Neuroscience, 17(3): 369-379.
    Waterhouse BD, Azizi SA, Burne RA, Woodward DJ. 1990. Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Research, 514(2): 276-292.
    Webb BS, Dhruv NT, Solomon SG, Tailby C, Lennie P. 2005. Early and late mechanisms of surround suppression in striate cortex of macaque. Journal of Neuroscience, 25(50): 11666-11675.
    Yang Y, Jin J, Zhou Y, Shou T. 2003. GABA(A) and GABA(B) receptors mediated inhibition affect the pattern adaptation of relay cells in the dorsal lateral geniculate nucleus (LGNd) of cats. Brain Research, 959(2): 295-303.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (548) PDF downloads(1108) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint