Volume 35 Issue 5
Sep.  2014
Turn off MathJax
Article Contents
Xin ZHU, Wu-Ying CHU, Ping WU, Tan YI, Tao CHEN, Jian-She ZHANG. MicroRNA signature in response to nutrient restriction and re-feeding in fast skeletal muscle of grass carp (Ctenopharyngodon idella). Zoological Research, 2014, 35(5): 404-410. doi: 10.13918/j.issn.2095-8137.2014.5.404
Citation: Xin ZHU, Wu-Ying CHU, Ping WU, Tan YI, Tao CHEN, Jian-She ZHANG. MicroRNA signature in response to nutrient restriction and re-feeding in fast skeletal muscle of grass carp (Ctenopharyngodon idella). Zoological Research, 2014, 35(5): 404-410. doi: 10.13918/j.issn.2095-8137.2014.5.404

MicroRNA signature in response to nutrient restriction and re-feeding in fast skeletal muscle of grass carp (Ctenopharyngodon idella)

doi: 10.13918/j.issn.2095-8137.2014.5.404
Funds:  This study was supported by the National Natural Science Foundation of China (31230076; 31340054), the Natural Science Foundation of Hunan province (14JJ2135) and the State Key Laboratory of Freshwater Ecology and Biotechnology (2012FB01)
More Information
  • Corresponding author: Tao CHEN, Jian-She ZHANG
  • Received Date: 2014-03-25
  • Rev Recd Date: 2014-07-17
  • Publish Date: 2014-09-08
  • The grass carp (Ctenopharyngodon idella) is one of the most important cultivated fish species in China. Mounting evidences suggests that microRNAs (miRNAs) may be key regulators of skeletal muscle among the grass carp, but the knowledge of the identity of myogenic miRNAs and role of miRNAs during skeletal muscle anabolic state remains limited. In the present study, we choose 8 miRNAs previously reported to act as muscle growth-related miRNAs for fasting-refeeding research. We investigated postprandial changes in the expression of 8 miRNAs following a single satiating meal in grass carp juveniles who had been fasting for one week and found that 7 miRNAs were sharply up-regulated within 1 or 3 h after refeeding, suggesting that they may be promising candidate miRNAs involved in a fast-response signaling system that regulates fish skeletal muscle growth.
  • loading
  • [1]
    Anderson C, Catoe H, Werner R. 2006. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Research, 34(20): 5863-5871.
    [2]
    Bower NI, Taylor RG, Johnston IA. 2009. Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon. Frontiers in Zoology, 6: 18-30.
    [3]
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4): 611-622.
    [4]
    Callis TE, Deng Z, Chen JF, Wang DZ. 2008. Muscling through the microRNA world. Experimental Biology and Medicine, 233(2): 131-138.
    [5]
    Callis TE, Wang DZ. 2008. Taking microRNAs to heart. Trends in Molecular Medicine, 14(6): 254-260.
    [6]
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38(2): 228-233.
    [7]
    Chu WY, Liu LS, Li YL, Chen L, Wang K Z, Li HH, Du SJ, Zhang JS. 2013. Systematic identification and differential expression profiling of microRNAs from white and red muscles of Siniperca chuatsi. Current Molecular Medicine, 13(8): 1397-1407.
    [8]
    Chu WY, Xia XJ, Chen DG, Fu GH, Liu C, Chen J, Liu F, Lu SQ, Zhang JS. 2010. Gene expression profiles of the muscle tissues of the commercial important teleost, Siniperca chuatsi L. Aquaculture International, 18: 667-678.
    [9]
    Drummond MJ, Glynn EL, Fry CS, Dhanani S, Volpi E, Rasmussen BB. 2009. Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2c mRNA expression in human skeletal muscle. The Journal of Nutrition, 139(12): 2279-2284.
    [10]
    Flynt AS, Lai EC. 2008. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nature Reviews Genetics, 9(11): 831-842.
    [11]
    Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG. 2007. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nature Genetics, 39(2): 259-263.
    [12]
    Fu Y, Shi Z, Wu M, Zhang J, Jia L, Chen X. 2011. Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus). PLoS ONE, 6(7): e22957.
    [13]
    Fuentes EN, Ruiz P, Valdes JA, Molina A. 2012. Catabolic signaling pathways, atrogenes, and ubiquitinated proteins are regulated by the nutritional status in the muscle of the fine flounder. PLoS ONE, 7(9): e44256.
    [14]
    Ge Y, Chen J. 2011. MicroRNAs in skeletal myogenesis. Cell Cycle, 10(3): 441-448.
    [15]
    Güller I, Russell AP. 2010. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. The Journal of Physiology, 588(pt21): 4075-4087.
    [16]
    Hagen O, Fernandes JMO, Solberg C, Johnston IA. 2009. Expression of growth-related genes in muscle during fasting and refeeding of juvenile Atlantic halibut, Hippoglossus hippoglossus L. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 152(1): 47-53.
    [17]
    Huang CW, Li YH, Hu SY, Chi JR, Lin GH, Lin CC, Gong HY, Chen JY, Chen RH, Chang SJ, Liu FG, Wu JL. 2012. Differential expression patterns of growth-related microRNAs in the skeletal muscle of Nile tilapia (Oreochromis niloticus). Journal of Animal Science, 90(12): 4266-4279.
    [18]
    Kim, HK, Lee, YS, Sivaprasad U, Malhotra A, Dutta A. 2006. Muscle specific microRNA miR-206 promotes muscle differentiation. The Journal of Cell Biology, 174(5): 677-687.
    [19]
    Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F, Jin Z, Yuan X, Liu Y. 2009. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochemical and Biophysical Research Communications, 378(2): 259-63.
    [20]
    Latronico MV, Catalucci D, Condorelli G. 2007. Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101(12): 1225-1236.
    [21]
    Liu J. 2008. Control of protein synthesis and mRNA degradation by microRNAs. Current Opinion in Cell Biology, 20(2): 214-221.
    [22]
    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 25(4): 402-408.
    [23]
    McCarthy JJ, Esser KA. 2007. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology, 102(1): 306-313.
    [24]
    Mishima Y, Abreu-Goodger C, Staton AA, Stahlhut C, Shou C, Cheng C, Gerstein M, Enright AJ, Giraldez AJ. 2009. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes & Development, 23(5): 619-632.
    [25]
    Montserrat N, Gabillard JC, Capilla E, Navarro MI, Gutiérrez J. 2007. Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 150(3): 462-472.
    [26]
    Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. 2006. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biology, 8(3): 278-284.
    [27]
    Nihei Y, Kobiyama A, Ikeda D, Ono Y, Ohara S, Cole NJ, Johnston IA, Watabe S. 2006. Molecular cloning and mRNA expression analysis of carp embryonic, slow and cardiac myosin heavy chain isoforms. The Journal of Experimental Biology, 209(1): 188-198.
    [28]
    Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ. 2006. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. The Journal of Cell Biology, 175(1): 77-85.
    [29]
    Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG, Yu XY. 2009. Upregulated expression of miR-1/miR- 206 in a rat model of myocardial infarction. Biochemical and Biophysical Research Communications, 381(4): 597-601.
    [30]
    Steinbacher P, Haslett JR, Six M, Gollmann HP, Sänger AM, Stoiber W. 2006. Phases of myogenic cell activation and possible role of dermomyotome cells in teleost muscle formation. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 235(11): 3132-3143.
    [31]
    Thum T, Catalucci D, Bauersachs J. 2008. MicroRNAs: novel regulators in cardiac development and disease. Cardiovascular Research, 79(4): 562-570.
    [32]
    Valente LM, Bower NI, Johnston IA. 2012. Postprandial expression of growth related genes in Atlantic salmon (Salmo salar L.) juveniles fasted for 1 week and fed a single meal to satiation. The British Journal of Nutrition, 108(12): 2148-2157.
    [33]
    Van Rooij E, Liu N, Olson EN. 2008. MicroRNAs flex their muscles. Trends in Genetics: TIG, 24(4): 159-166.
    [34]
    Wong CF, Tellam RL. 2008. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. Journal of Chemical Biology, 283(15): 9836-9843.
    [35]
    Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M. 2005. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature, 434(7031): 338-345.
    [36]
    Yan B, Guo JT, Zhao LH, Zhao JL. 2012a. microRNA expression signature in skeletal muscle of Nile tilapia. Aquaculture, 364-365: 240-246.
    [37]
    Yan X, Ding L, Li Y, Zhang X, Liang Y, Sun X, Teng CB. 2012b. Identification and profiling of microRNAs from skeletal muscle of the common carp. PLoS ONE, 7(1): e30925.
    [38]
    Zhang JS, Fu GH, Chu WY, Chen J, Liu Z, Liu F, Lu SQ, Liang P. 2009. cDNA cloning and expression analysis of myosin heavy chain gene(MHC)of the Mandarin fish, Sniperca kneri. Aquaculture Research, 40(4): 412-418.
    [39]
    Zhang YQ, Wen JF. 2010. Mirna system in unicellular eukaryotes and its evolutionary implications. Zoological Research, 31(1): 39-42 [in Chinese]
    [40]
    Zhou RX, Meng T, Meng HB, Cheng DX, Bin SY, Cheng J, Fu GH, Chu WY, Zhang JS. 2010. Selection of reference genes in transcription analysis of gene expression of the Mandarin fish, Siniperca chuasti. Zoological Research, 31(2): 141-146.
  • Relative Articles

    [1] Zhi-Jun ZHAO, Yong-An LIU, Jing-Ya XING, Mao-Lun ZHANG, Xiao-Ying NI, Jing CAO. The role of leptin in striped hamsters subjected to food restriction and refeeding. Zoological Research, 2014, 35(4): 262-271.  doi: 10.13918/j.issn.2095-8137.2014.4.262
    [2] Xiao-Juan LI, Qiong-Ying TANG, Huan-Zhang LIU. Skeletal anatomy and phylogenetic position analysis of Gobiocypris rarus. Zoological Research, 2013, 34(4): 379-386.  doi: 10.11813/j.issn.0254-5853.2013.4.0379
    [3] Zhi-Jun ZHAO, Wen-Tao WEI, Ming-Zhen LI, Jing CAO. Body mass, energy budget and leptin of mice under stochastic food restriction and refeeding. Zoological Research, 2013, 34(6): 574-581.  doi: 10.11813/j.issn.0254-5853.2013.6.0574
    [4] Jun-Xing YANG, Shu-Sen SHU, Xiao-Yong CHEN. Effect of grass carp introduction of the extinction of Ottelia acuminata in Dianchi Lake. Zoological Research, 2013, 34(6): 631-635.  doi: 10.11813/j.issn.0254-5853.2013.6.0631
    [5] YU Hong-Xia, TANG Wen-Qiao*, LI Si-Fa. Ontogenetic Changes in Meristic Measurements of Silver Carp and Bighead Carp. Zoological Research, 2010, 31(2): 169-176.  doi: 10.3724/SP.J.1141.2010.02169
    [6] ZHAO Zhi-jun, WANG Rui-rui, CAO Jing, PEI Lan-ying. Effect of Random Food Deprivation and Refeeding on Energy Budget and Development in Mice. Zoological Research, 2009, 30(5): 534-538.  doi: 10.3724/SP.J.1141.2009.05534
    [7] YU Ying, LIANG Xu-fang, LI Guan-gui, WANG Lin, LI Guang-zhao. Molecular Cloning and Analysis of Leptin Gene in Grass Carp (Ctenopharyngodon idellus) and Silver Carp (Hypophthalmichthys molitrix). Zoological Research, 2009, 30(5): 479-485.  doi: 10.3724/SP.J.1141.2009.05480
    [8] LI Ou, ZHAO Ying-ying, GUO Na, LU Cui-yun, SUN Xiao-wen. Effects of Sample Size and Loci Number on Genetic Diversity in Wild Population of Grass Carp Revealed by SSR. Zoological Research, 2009, 30(2): 121-130.  doi: 10.3724/SP.J.1141.2009.02121
    [9] PENG Wu, TANG Ya-nan, HU Cheng-yu. Characterization of CaPKR-like Expression in Tissues from Crucian and Grass Carp. Zoological Research, 2007, 28(5): 465-469.
    [10] GAO Jia-li, LUO Yu-ping*, LI Si-guang. Molecular Evolution of miR-34 Gene Family. Zoological Research, 2007, 28(3): 271-278.
    [11] DU Wei-guo, LU Yi-wei, JI Xiang. Utilization of Lipid in Northern Grass Lizards Takydromus septentrionalis in Hangzhou in the Breeding Season. Zoological Research, 2003, 24(5): 392-394.
    [12] FLU Quan-zhang. The Composition of immune Cells in Head Kidney of Grass Carp (Ctenopharyngodon idellus) Together With Ontogenic Change of Their Numbers. Zoological Research, 1998, 19(1): 11-16.
    [13] ZHU Dao-li. A Study on The Architecture and Fiber Types of The Gastrocnemius Muscle in Rabbit. Zoological Research, 1997, 18(3): 259-266.
    [14] REN Xiu-hai. Chromosomal Restriction Endonuclease Digestion of A Triploid Grass Cyprinid (Ctenopharyngodon idellus). Zoological Research, 1996, 17(2): 187-192.
    [15] DING Hong-biao, HAN Zheng-kang, CHENG Jie. Effects of Cimaterol on The Growth and Muscle Characteristics in Rat. Zoological Research, 1996, 17(3): 233-238.
    [16] HANG Qi, MAO Shu-jian. Chromosome Packing of The Grass Carp (Ctenopharyngodon idellus) From Interphase To Metaphase. Zoological Research, 1993, 14(4): 367-373.
    [17] CHEN Xin, YANG Lan. The Study of Fasting and Exhausting of Energy Materials Within Night of Pycnonotus xanthorrhous (Anderson's Bulbul). Zoological Research, 1990, 11(3): 229-236.
    [18] PAN Pu-liang, WANG Hong, N.G.Jablonski. Long Bone and Skeletal Allometry in Rhinopithecus. Zoological Research, 1989, 10(1): 23-30.
    [19] ZHANG Ying-pei, LIU Hong, LOU Yun-dong. Electrophoresis of Isozymes and Muscle Protein of An Abnormal Crucian Carp. Zoological Research, 1989, 10(3): 249-250.
    [20] HE Qi-wei, GONG Chao-liang. Ultrastructural Study on Myonecrosis of mice Skeletal Muscle Induced by the Cardiotoxins and Phospholipase A2 from Naja naja atra Venom. Zoological Research, 1986, 7(4): 385-390.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (681) PDF downloads(1549) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return