Volume 35 Issue 3
May  2014
Turn off MathJax
Article Contents
Ming GUO, Wen-Zhe HO. Animal models to study Mycobacterium tuberculosis and HIV co-infection. Zoological Research, 2014, 35(3): 163-169. doi: 10.11813/j.issn.0254-5853.2014.3.163
Citation: Ming GUO, Wen-Zhe HO. Animal models to study Mycobacterium tuberculosis and HIV co-infection. Zoological Research, 2014, 35(3): 163-169. doi: 10.11813/j.issn.0254-5853.2014.3.163

Animal models to study Mycobacterium tuberculosis and HIV co-infection

doi: 10.11813/j.issn.0254-5853.2014.3.163
  • Received Date: 2013-08-12
  • Rev Recd Date: 2014-02-20
  • Publish Date: 2014-05-08
  • Mycobacterium tuberculosis (M.tb) and human immunodeficiency virus (HIV) co-infection has become a public health issue worldwide. Up to now, there have been many unresolved issues either in the clinical diagnosis and treatment of M.tb/HIV co-infection or in the basic understanding of the mechanisms for the impairments to the immune system by interactions of these two pathogens. One important reason for these unsolved issues is the lack of appropriate animal models for the study of M.tb/HIV co-infection. This paper reviews the recent development of research on the animal models of M.tb/HIV co-infection, with a focus on the non-human primate models.
  • loading
  • [1]
    Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, Behnke S, Frey J, Oxenius A, Joller H, Aguzzi A, Speck RF. 2006. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-γc-/- mice. Proceedings of the National Academy of Sciences of the United States of America, 103(43): 15951-15956.
    [2]
    Calderon VE, Valbuena G, Goez Y, Judy BM, Huante MB, Sutjita P, Johnston RK, Estes DM, Hunter RL, Actor JK, Cirillo JD, Endsley JJ. 2013. A humanized mouse model of tuberculosis. PLoS One, 8(5): e63331.
    [3]
    Cheynier R, Gratton S, Halloran M, Stahmer I, Letvin NL, Wain-Hobson S. 1998. Antigenic stimulation by BCG vaccine as an in vivo driving force for SIV replication and dissemination. Nature Medicine, 4(4): 421-427.
    [4]
    Croix DA, Capuano S, Simpson L, Fallert BA, Fuller CL, Klein EC, Reinhart TA, Murphey-Corb M, Flynn JL. 2000. Effect of mycobacterial infection on virus loads and disease progression in simian immunodeficiency virus-infected rhesus monkeys. AIDS Research and Human Retroviruses, 16(17): 1895-1908.
    [5]
    Daley CL, Small PM, Schecter GF, Schoolnik GK, Mcadam RA, Jacobs Jr WR, Hopewell PC. 1992. An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus-an analysis using restriction-fragment-length polymorphisms. New England Journal of Medicine, 326(4): 231-235.
    [6]
    Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F, Zou W, Payne DA, Estes JD, Garcia JV. 2010. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS One, 5(1): e8829.
    [7]
    Diedrich CR, Mattila JT, Klein E, Janssen C, Phuah J, Sturgeon TJ, Montelaro RC, Lin PL, Flynn JL. 2010. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One, 5(3): e9611.
    [8]
    Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, Gendelman HE, Poluektova LY. 2010. CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. The Journal of Immunology, 184(12): 7082-7091.
    [9]
    Gormus BJ, Blanchard JL, Alvarez XH, Didier PJ. 2004. Evidence for a rhesus monkey model of asymptomatic tuberculosis. Journal of Medical Primatology, 33(3): 134-145.
    [10]
    Hanson DL, Chu SY, Farizo KM, Ward JW. 1995. Distribution of CD4+ T lymphocytes at diagnosis of acquired immunodeficiency syndrome-defining and other human immunodeficiency virus-related illnesses. Archives of Internal Medicine, 155(14): 1537.
    [11]
    Heuts F, Gavier-Widén D, Carow B, Juarez J, Wigzell H, Rottenberg ME. 2013. CD4+ cell-dependent granuloma formation in humanized mice infected with mycobacteria. Proceedings of the National Academy of Sciences of the United State of America, 110(16): 6482-6487.
    [12]
    Joseph A, Zheng JH, Chen K, Dutta M, Chen C, Stiegler G, Kunert R, Follenzi A, Goldstein H. 2010. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. Journal of Virology, 84(13): 6645-6653.
    [13]
    Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P. 2008. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell, 134(4): 577-586.
    [14]
    Lawn SD, Bekker L-G, Middelkoop K, Myer L, Wood R. 2006. Impact of HIV infection on the epidemiology of tuberculosis in a peri-urban community in South Africa: The need for age-specific interventions. Clinical Infectious Diseases, 42(7): 1040-1047.
    [15]
    Lei AH, Pang W, Zhang GH, Zheng YT. 2013. Use and research of pigtailed macaque in nonhuman primate HIV/AIDS models. Zoological Research, 34(2): 77-88.
    [16]
    Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C, Klein E, Flynn JL. 2012. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Research and Human Retroviruses, 28(12): 1693-1702.
    [17]
    Mansfield KG, Pauley D, Young HL, Lackner AA. 1995. Mycobacterium avium complex in macaques with AIDS is associated with a specific strain of simian immunodeficiency virus and prolonged survival after primary infection. Journal of Infectious Diseases, 172(4): 1149-1152.
    [18]
    Mansfield KG, Veazey RS, Hancock A, Carville A, Elliott M, Lin KC, Lackner AA. 2001. Induction of disseminated Mycobacterium avium in simian AIDS is dependent upon simian immunodeficiency virus strain and defective granuloma formation. The American Journal of Pathology, 159(2): 693-702.
    [19]
    Maslow JN, Brar I, Smith G, Newman GW, Mehta R, Thornton C, Didier P. 2003. Latent infection as a source of disseminated disease caused by organisms of the Mycobacterium avium complex in simian immunodeficiency virus-infected rhesus macaques. Journal of Infectious Diseases, 187(11): 1748-1755.
    [20]
    Mattila JT, Diedrich CR, Lin PL, Phuah J, Flynn JL. 2011. Simian immunodeficiency virus-induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. Journal of Immunology, 186(6): 3527-3537.
    [21]
    Mehra S, Golden NA, Dutta NK, Midkiff CC, Alvarez X, Doyle LA, Asher M, Russell-Lodrigue K, Monjure C, Roy CJ, Blanchard JL, Didier PJ, Veazey RS, Lackner AA, Kaushal D. 2011. Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. Journal of Medical Primatology, 40(4): 233-243.
    [22]
    Mtei L, Matee M, Herfort O, Bakari M, Horsburgh CR, Waddell R, Cole BF, Vuola JM, Tvaroha S, Kreiswirth B, Pallangyo K, Von Reyn CF. 2005. High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. Clinical Infectious Diseases, 40(10): 1500-1507.
    [23]
    Mukadi Y, Perriens J, St Louis M, Brown C, Ryder R, Portaels F, Piot P, Willame J, Prignot J, Pouthier F, Kaboto M. 1993. Spectrum of immunodeficiency in HIV-1-infected patients with pulmonary tuberculosis in Zaire. Lancet, 342(8864): 143-146.
    [24]
    Newman GW, Adams DL, Maslow JN, Murphy-Corb M, Didier PJ. 1999. Differential tumor necrosis factor α production in simian immunodeficiency virus-infected rhesus macaques coinfected with Mycobacterium avium. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 28(3): 514-519.
    [25]
    Nuttall JJC, Eley BS. 2011. BCG vaccination in HIV-infected children. Tuberculosis Research and Treatment, 2011: Article ID 712736, 10.1155/2011/712736.
    [26]
    Post FA, Wood R, Pillay GP. 1995. Pulmonary tuberculosis in HIV infection: Radiographic appearance is related to CD4+ T-lymphocyte count. Tubercle and Lung Disease, 76(6): 518-521.
    [27]
    Safi H, Gormus BJ, Didier PJ, Blanchard JL, Lakey DL, Martin LN, Murphey-Corb M, Vankayalapati R, Barnes PF. 2003. Spectrum of manifestations of Mycobacterium tuberculosis infection in primates infected with SIV. AIDS Res Hum Retroviruses, 19(7): 585-595.
    [28]
    Scanga CA, Bafica A, Sher A. 2007. Viral gene expression in HIV transgenic mice is activated by Mycobacterium tuberculosis and suppressed after antimycobacterial chemotherapy. Journal of Infectious Diseases, 195(2): 246-254.
    [29]
    Shen L, Shen Y, Huang D, Qiu L, Sehgal P, Du GZ, Miller MD, Letvin NL, Chen ZW. 2004a. Development of Vγ2Vδ2+ T cell responses during active mycobacterial coinfection of simian immunodeficiency virus-infected macaques requires control of viral infection and immune competence of CD4+ T cells. Journal of Infectious Diseases, 190(8): 1438-1447.
    [30]
    Shen Y, Shen L, Sehgal P, Huang D, Qiu L, Du G, Letvin NL, Chen ZW. 2004b. Clinical latency and reactivation of AIDS-related mycobacterial infections. Journal of Virology, 78(24): 14023-14032.
    [31]
    Shen Y, Shen L, Sehgal P, Zhou DJ, Simon M, Miller M, Enimi EA, Henckler B, Chalifoux L, Sehgal N, Gastron M, Letvin NL, Chen ZW. 2001. Antiretroviral agents restore Mycobacterium-specific T-cell immune responses and facilitate controlling a fatal tuberculosis-like disease in macaques coinfected with simian immunodeficiency virus and Mycobacterium bovis BCG. Journal of Virology, 75(18): 8690-8696.
    [32]
    Shen Y, Zhou DJ, Chalifoux L, Shen L, Simon M, Zeng XJ, Lai XM, Li YY, Sehgal P, Letvin NL, Chen ZW. 2002a. Induction of an AIDS virus-related tuberculosis-like disease in macaques: a model of simian immunodeficiency virus- mycobacterium coinfection. Infection and Immunity, 70(2): 869-877.
    [33]
    Shen Y, Zhou DJ, Qiu L, Lai XM, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li YY, Zeng XJ, Morita CT, Brenner MB, Letvin NL, Chen ZW. 2002b. Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science, 295(5563): 2255-2258.
    [34]
    Sun ZF, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, Melkus MW, Padgett-Thomas A, Zupancic M, Haase AT. 2007. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. The Journal of Experimental Medicine, 204(4): 705-714.
    [35]
    Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG. 2004. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science, 304(5667): 104-107.
    [36]
    UNAIDS. 2013. Global report: UNAIDS Report on the Global AIDS Epidemic 2013. Geneva: WHO.
    [37]
    WHO. 2013. Global Tuberculosis Report 2013. WHO, Geneva, Switzerland. WHO/HTM/TB.
    [38]
    Xia HJ, Zhang GH, Zheng YT. 2010. Roles of dendritic cell in disease progression of AIDS primate models. Zoological Research, 31(1): 57-65.
    [39]
    Ye RG, Lu ZY. 2004. Internal Medicine. 6th ed. Beijing: Peoples Medical Publishing House.
    [40]
    Zhang GH, Li MH, Zheng YT. 2007a. Application of AIDS macaques animal model in HIV vaccine research. Zoological Research, 28(5): 556-562.
    [41]
    Zhang LG, Kovalev GI, Su LS. 2007b. HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood, 109(7): 2978-2981.
    [42]
    Zhou DJ, Lai XM, Shen Y, Sehgal P, Shen L, Simon M, Qiu LY, Huang D, Du GZ, Wang QF, Letvin NL, Chen ZW. 2003. Inhibition of a Vγ2Vδ2+ T-cell responses during active mycobacterial coinfection of simian immunodeficiency virus SIVmac-infected monkeys. Journal of Virology, 77(5): 2998-3006.
    [43]
    Zhou DJ, Shen Y, Chalifoux L, Lee-Parritz D, Simon M, Sehgal PK, Zheng L, Halloran M, Chen ZW. 1999. Mycobacterium bovis bacille Calmette-Guérin enhances pathogenicity of simian immunodeficiency virus infection and accelerates progression to AIDS in macaques: A role of persistent T cell activation in AIDS pathogenesis. The Journal of Immunology, 162(4): 2204-2216.
    [44]
    Zhou Y, Bao R, Haigwood N, Persidsky Y, Ho W Z. 2013. SIV infection of rhesus macaques of Chinese origin: A suitable model for HIV infection in humans. Retrovirology, 10(1): 89.
  • Relative Articles

    [1] Ling Xu, Dan-Dan Yu, Yu-Hua Ma, Yu-Lin Yao, Rong-Hua Luo, Xiao-Li Feng, Hou-Rong Cai, Jian-Bao Han, Xue-Hui Wang, Ming-Hua Li, Chang-Wen Ke, Yong-Tang Zheng, Yong-Gang Yao. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 2020, 41(5): 517-526.  doi: 10.24272/j.issn.2095-8137.2020.053
    [2] Gary Wong, Wen-Guang Cao, Shi-Hua He, Zi-Rui Zhang, Wen-Jun Zhu, Estella Moffat, Hideki Ebihara, Carissa Embury-Hyatt, Xiang-Guo Qiu. Development and characterization of a guinea pig model for Marburg virus. Zoological Research, 2018, 39(1): 32-41.  doi: 10.24272/j.issn.2095-8137.2017.054
    [3] Gary Wong, Xiang-Guo Qiu. Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential. Zoological Research, 2018, 39(1): 3-14.  doi: 10.24272/j.issn.2095-8137.2017.052
    [4] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.  Animal models for the study of hepatitis B virus infection. Zoological Research, 2018, 39(1): 25-31.  doi: 10.24272/j.issn.2095-8137.2018.013
    [5] Yong-Gang Yao. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 2017, 38(3): 118-126.  doi: 10.24272/j.issn.2095-8137.2017.032
    [6] Ji Xiao, Rong Liu, Ce-Shi Chen. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zoological Research, 2017, 38(3): 127-137.  doi: 10.24272/j.issn.2095-8137.2017.033
    [7] Ai-Hua LEI, Wei PANG, Gao-Hong ZHANG, Yong-Tang ZHENG. Use and research of pigtailed macaques in nonhuman primate HIV/AIDS models. Zoological Research, 2013, 34(2): 77-88.  doi: 10.3724/SP.J.1141.2013.02077
    [8] GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo. Glaucoma model for stem cell transplantation research in New Zealand white rabbits. Zoological Research, 2012, (2): 225-230.  doi: 10.3724/SP.J.1141.2012.02225
    [9] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong. Animal models of human glioma: the progress of application and investigation. Zoological Research, 2012, 33(3): 337-342.  doi: 10.3724/SP.J.1141.2012.03337
    [10] WANG Wen-Guang, HUANG Xiao-Yan, XU Juan, SUN Xiao-Mei, DAI Jie-Jie, LI Qi-Han. Experimental studies on infant Tupaia belangeri chineses with EV71 infection. Zoological Research, 2012, 33(1): 7-13.  doi: 10.3724/SP.J.1141.2012.01007
    [11] CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang. The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication. Zoological Research, 2012, 33(1): 99-107.  doi: 10.3724/SP.J.1141.2012.01099
    [12] SHEN Pei-Qing, ZHENG Hong, LIU Ru-Wen, CHEN Li-Ling, LI Bo, HE Bao-Li, LI Jin-Tao, BE. Progress and prospect in research on laboratory tree shrew in China. Zoological Research, 2011, 32(1): 109-114.  doi: 10.3724/SP.J.1141.2011.01109
    [13] LI Yuan, SU Jian-Jia, YANG Chun, CAO Ji, OU Chao, LIANG Liang, YANG Fang, WANG. Progress on establishment of tree shrew(Tupaia) chronic infection with HBV in vivo. Zoological Research, 2011, 32(1): 104-108.  doi: 10.3724/SP.J.1141.2011.01104
    [14] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan. Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model. Zoological Research, 2011, 32(1): 97-103.  doi: 10.3724/SP.J.1141.2011.01097
    [15] CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y. Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis. Zoological Research, 2011, 32(1): 40-49.  doi: 10.3724/SP.J.1141.2011.01040
    [16] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang. Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides. Zoological Research, 2010, 31(1): 66-76.  doi: 10.3724/SP.J.1141.2010.01066
    [17] ZHANG Gao-hong, CHEN Ya-li, TANG Hong, ZHENG Yong-tang. Humanized SCID Mouse:A Small Animal Model for HIV Research. Zoological Research, 2004, 25(4): 356-362.
    [18] WANG Jian-hua, WANG Yuan-yuan, OUYANG Dong-yun, ZHENG Yong-tang. Apoptosis in Human Immunodeficiency Virus Infection. Zoological Research, 2002, 23(6): 514-520.
    [19] GUO Ren, CHEN Shu-fan, LUO Qi-sheng, WANG Qing-ling, YI Hong-kun, ZHAN Qiong-fen. Transgenic Mice as A Model For Neurovirulence Test of Live Poliomyelitis Vaccines. Zoological Research, 1999, 20(4): 241-246.
    [20] HUANG Hai, BEN Kun-long, ZHENG Yong-tang. Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome. Zoological Research, 1997, 18(1): 121-128.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1036) PDF downloads(1507) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return