[1] Chen K, Yu B. 1999. Certain progress of clinical research on Chinese integrative medicine. Chinese Medical Journal (Engl), 112(10): 934−937.
[2] Chen M, Li J, Zhang F, Liu Z. 2014. Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. Journal of Peptide Science, 20(3): 159−164. doi:  10.1002/psc.2588
[3] Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18): 3674−3676. doi:  10.1093/bioinformatics/bti610
[4] Edgar RC. 2010. Quality measures for protein alignment benchmarks. Nucleic Acids Research, 38(7): 2145−2153. doi:  10.1093/nar/gkp1196
[5] Edgecombe GD, Giribet G. 2007. Evolutionary biology of centipedes (Myriapoda: Chilopoda). Annual Review of Entomology, 52: 151−170. doi:  10.1146/annurev.ento.52.110405.091326
[6] Gonzalez-Morales L, Pedraza-Escalona M, Diego-Garcia E, Restano-Cassulini R, Batista CV, Gutierrez Mdel C, Possani LD. 2014. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. Journal of Proteomics, 111: 224−237. doi:  10.1016/j.jprot.2014.04.033
[7] Hakim MA, Yang S, Lai R. 2015. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel), 7(11): 4832−4851. doi:  10.3390/toxins7114832
[8] Harvey AL. 2014. Toxins and drug discovery. Toxicon, 92: 193−200. doi:  10.1016/j.toxicon.2014.10.020
[9] He QY, He QZ, Deng XC, Yao L, Meng E, Liu ZH, Liang SP. 2008. ATDB: a uni-database platform for animal toxins. Nucleic Acids Research, 36.
[10] Hou H, Yan W, Du K, Ye Y, Cao Q, Ren W. 2013. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expression and Purification, 92(2): 230−234. doi:  10.1016/j.pep.2013.10.004
[11] Jiang H, Wong WH. 2009. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25(8): 1026−1032. doi:  10.1093/bioinformatics/btp113
[12] Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F. 2015. From foe to friend: using animal toxins to investigate ion channel function. Journal of Molecular Biology, 427(1): 158−175. doi:  10.1016/j.jmb.2014.07.027
[13] King G. 2013. Venoms to drugs: translating venom peptides into therapeutics. Australian Biochemist, 44(3): 13−16.
[14] King GF. 2011. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11(11): 1469−1484. doi:  10.1517/14712598.2011.621940
[15] Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi:  10.1093/molbev/msw054
[16] Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3): R25. doi:  10.1186/gb-2009-10-3-r25
[17] Liu ZC, Zhang R, Zhao F, Chen ZM, Liu HW, Wang YJ, Jiang P, Zhang Y, Wu Y, Ding JP, Lee WH, Zhang Y. 2012. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. Journal of Proteome Research, 11(12): 6197−6212. doi:  10.1021/pr300881d
[18] Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon, 55(2-3): 274−279. doi:  10.1016/j.toxicon.2009.07.040
[19] Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5): 651−652. doi:  10.1093/bioinformatics/btg034
[20] Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, Lin Z, Jiang W, Li B, Du C, Yang S, Jiang H, Feng Q, Xu X, Wang J, Lai R. 2015. Peptidomics combined with cDNA library unravel the diversity of centipede venom. Journal of Proteomics, 114: 28−37. doi:  10.1016/j.jprot.2014.10.014
[21] Savitski MM, Nielsen ML, Kjeldsen F, Zubarev RA. 2005. Proteomics-grade de novo sequencing approach. Journal of Proteome Research, 4(6): 2348−2354. doi:  10.1021/pr050288x
[22] Smith JJ, Herzig V, King GF, Alewood PF. 2013. The insecticidal potential of venom peptides. Cellular and Molecular Life Sciences: CMLS, 70(19): 3665−3693. doi:  10.1007/s00018-013-1315-3
[23] Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105−1111. doi:  10.1093/bioinformatics/btp120
[24] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol, 28(5): 511−515. doi:  10.1038/nbt.1621
[25] Undheim EA, Fry BG, King GF. 2015. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel), 7(3): 679−704. doi:  10.3390/toxins7030679
[26] Undheim EA, Jenner RA, King GF. 2016. Centipede venoms as a source of drug leads. Expert Opinion on Drug Discovery, 11(12): 1139−1149. doi:  10.1080/17460441.2016.1235155
[27] Undheim EA, King GF. 2011. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon, 57(4): 512−524. doi:  10.1016/j.toxicon.2011.01.004
[28] Wang K, Fang H, Ye M, Chen H, Zhu Y, Fang H. 1997. Investigation on the resources of medicinal centipedes and identification on their commodities. Journal of Chinese Medicinal Materials, 20(9): 450−452.
[29] Yang S, Liu Z, Xiao Y, Li Y, Rong M, Liang S, Zhang Z, Yu H, King GF, Lai R. 2012. Chemical punch packed in venoms makes centipedes excellent predators. Molecular and Cellular Proteomics, 11(9): 640−650. doi:  10.1074/mcp.M112.018853
[30] Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF. 2013. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proceedings of the Natlional Academy of Sciences of the Untied States of America, 110(43): 17534−17539. doi:  10.1073/pnas.1306285110
[31] Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K, Lai R. 2015. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nature Communications, 6: 8297. doi:  10.1038/ncomms9297
[32] Zhang Y. 2015. Why do we study animal toxins?. Zoological Research, 36(4): 183−222.
[33] Zhao F, Guo X, Wang Y, Liu J, Lee WH, Zhang Y. 2014a. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing. PLoS One, 9(8): e104191. doi:  10.1371/journal.pone.0104191
[34] Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y, Lee WH. 2018a. Proteotranscriptomic analysis and discovery of the profile and diversity of toxin-like proteins in centipede. Molecular and Cellular Proteomics, 17(4): 709−720. doi:  10.1074/mcp.RA117.000431
[35] Zhao F, Lan XQ, Du Y, Chen PY, Zhao J, Zhao F, Lee WH, Zhang Y. 2018b. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zoological Research, 39(2): 87−96. doi:  10.24272/j.issn.2095-8137.2018.025
[36] Zhao F, Yan C, Wang X, Yang Y, Wang G, Lee W, Xiang Y, Zhang Y. 2014b. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Research, 21(1): 1−13. doi:  10.1093/dnares/dst035