[1] Aschoff J. 1981. Thermal conductance in mammals and birds: Its dependence on body size and circadian phase. Comparative Biochemistry and Physiology Part A, 69(4): 611-619.
[2] Aschoff J, Pohl H. 1970. Der ruheumsatz von vögeln als function der tageszeit and der körpergröbe. Journal of Ornithology, 111(1): 38-47.
[3] Bartholomew GA, Vleck CM, Bucher TL. 1983. Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores. Manacus vitellinus and Pipra mentalis.Physiological Zoology, 56(3): 370-379.
[4] Bozinovic F. 1992. Rate of basal metabolism of grazing rodents from different habitats. Journal of Mammalogy, 73(2): 379-384.
[5] Bozinovic F, Gallardo P. 2006. The water economy of South American desert rodents: From integrative to molecular physiological ecology. Comparative Biochemistry and Physiology Part C, 142(3-4): 163-172.
[6] Burton CT, Weathers WW. 2003. Energetics and thermoregulation of the gouldian finch Erythrura gouldiae.The Emu, 103: 1-10.
[7] Dawson WR. 1982. Evaporative losses of water by birds. Comparative Biochemistry and Physiology Part A, 71(4): 495-509.
[8] Donald RP. 1992. Effect of temperature and humidity on evaporative water loss in Anna's hummingbird (CMypte anna).Journal of Comparative Physiology B, 162(1): 74-84.
[9] Dawson WR. 2003. Plasticity in avian responses to thermal challenges-an essay in honor of Jacob Marder. Israel Journal of Zoology, 49: 95-109.
[10] Kendeigh SC, Dol'nik VR, Gavrilov VM. 1977. Avian energetic. In: Pinowski J, Kendiegh S C. Granivorous Birds in Ecosystems. Cambridge University Press, 127-204.
[11] Lovegrove BG. 2003. The influence of climate on the basal metabolic rate of small mammals: A slow fast metabolic continuum. Journal of Comparative Physiology B, 173(2): 87-112.
[12] Lasiewski RC, Dawson WR. 1967. A re-examination of the relation between standard metabolic rate and body weight in birds. The Condor, 69(1): 13-23.
[13] Liu JS, Wang DH, Sun RY. 2005. Climatic adaptations in metabolism of four species of small birds in China. Acta Zoologica Sinica, 51(1): 24-30.
[14] Lin L, Wang LH, Liu JS. 2010. Metabolism and thermoregulation in crested mynas (Acridotheres cristatellus). Chinese Journal of Zoology, 45(5): 47-53.
[15] Li M, Liu JS, Han HL, Zhang HJ, Fang H. 2005. Metabolism and thermoregulation in waxwings (Bombycilla garrulous) and black-faced buntings (Emberiza spodocephala). Zoological Research, 26(3): 287-293.
[16] Liu JS, Wang DH, Wang Y, Chen MH, Song CG, Sun RY. 2004. Energetics and thermoregulation of the Carpodacus roseus Fringilla montifringilla and Acanthis flammea.Acta Zoologica Sinica, 50(3): 357-363.
[17] MacKinnon J, Phillipps K. 2000. A field guide to the birds of China. London: Oxford University Press, 312-340.
[18] McKechnie AE, Wolf BO. 2004. The allometry of avian basal metabolic rate: Good predictions need good data. Physiological and Biochemical Zoology, 77(3): 502-521.
[19] McKechnie AE, Freckleton RP, Jetz W. 2006. Phenotypic plasticity in the scaling of avian basal metabolic rate. Proceedings of the Royal Society of London B, 273(1589): 931-937.
[20] McNab BK. 1983. Energetics, body size, and the limits of endothermy. Journal of Zoology, 199(1): 1-29.
[21] McNab BK. 2009. Ecological factors affect the level and scaling of avian BMR. Comparative Biochemistry and Physiology Part A, 152(1): 22-45.
[22] McKechnie AE, Lovegrove BG. 2002. Avian facultative hypothermic responses: A review. The Condor, 104(4): 705-724.
[23] MaCmillen RE, Whittow GC, Christophe EA, Ebisu RJ. 1977. Oxygen consumption, evaporative water loss, and body temperature in the sooty tern. The Auk, 94(1): 72-79.
[24] Silva JE. 2006. Thermogenic mechanisms and their hormonal regulation. Physiological Reviews, 86(2): 435-464.
[25] Schmidt-Nielsen K. 1997. Animal Physiology: Adaptation and Environment. 5th ed. London: Cambridge University Press, 169-214.
[26] Tieleman BI, Williams JB. 1999. The role of hyperthermia in the water economy of desert birds. Physiological and Biochemical Zoology, 72(1): 87-100.
[27] Tieleman BI, Williams JB, Michaeli E, Pinshow B. 1999. The role of the nasal passages in the water economy of crested larks and desert larks. Physiological and Biochemical Zoology, 72(2): 219-226.
[28] Tieleman BI, Williams JB. 2002. Cutaneous and respiratory water loss in larks from arid and mesic environments. Physiological and Biochemical Zoology, 75(6): 590-599.
[29] Tieleman BI, Williams JB, Buschur ME. 2002. Physiological adjustments to arid and mesic environments in larks (Alaudidae). Physiological and Biochemical Zoology, 75(3): 305-313.
[30] Tieleman BI, Williams JB, Bloomer P. 2003a. Adaptation of metabolism and evaporative water loss along an aridity gradient. Proceedings of the Royal Society of London B, 270: 207-214.
[31] Tieleman BI, Williams JB, Buschur ME, Brown CR. 2003b. Phenotypic
[32] variation of larks along an aridity gradient: are desert birds more flexible? Ecology, 84(7): 1800-1815.
[33] Weathers WW. 1997. Energetics and thermoregulation by small passerines of the humid, low land tropics. The Auk, 114(3): 341-353.
[34] Williams JB. 1996. A phylogenetic perspective of evaporative water loss in birds. The Auk, 113(2): 457-472.
[35] Williams JB, Muñoz-Garcia A, Champagne A. 2012. Climate change and cutaneous water loss of birds. The Journal of Experimental Biology, 215(Pt7): 1053-1060.
[36] Williams JB, Tieleman BI. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. The Journal of Experimental Biology, 203(Pt 20): 3153-3159.
[37] Williams JB. 1999. Heat production and evaporative water loss of Dune larks from the Namib desert. The Condor, 101(2): 432-438.
[38] Wiersma P, Muñoz-Garcia A, Walker A, Williams JB. 2007. Tropical birds have a slow pace of life. Proceedings of the National Academy of the Sciences of the United States of America, 104(22): 9340-9345.
[39] Xia SS, Yu AW, Zhao LD, Zhang HY, Zheng WH, Liu JS. 2013. Metabolic thermogenesis and evaporative water loss in the Huamei Garrulax canorus.Journal of Thermal Biology, 38(8): 576-581.
[40] Zhu WL, Jia T, Lian X, Wang ZK. 2008a. Evaporative water loss and energy metabolic in two small mammals, voles (Eothenomys miletus) and mice (Apodemus chevrieri), in Hengduan Mountains region. Journal of Thermal Biology, 33(6): 324-331.
[41] Zhu WL, Yang YH, Jia T, Lian X, Wang ZK, Gong ZD, Guo XG. 2008b. Evaporative water loss and body temperature regulation in Eothenomys miletus and Apodemus chevrieri.Acta Theriologica Sinica, 28(1): 65-74.
[42] Zhou W, Wang YP, Chen DH, Liu JS. 2010. Diurnal rhythms of Chinese bulbul (Pycnonotus sinensis) body temperature, body mass, and energy metabolism. Chinese Journal of Ecology, 29(12): 2395-2400.
[43] Zheng WH, Liu JS, Jiang XH, et al. 2008. Seasonal variation on metabolism and thermoregulation in Chinese bulbul. Journal of Thermal Biology, 33(6): 315-319.
[44] Zhang YP, Liu JS, Hu XJ, et al. 2006. Metabolism and thermoregulation in two species of passerines from southeastern China in summer. Acta oologica Sinica, 52(4): 641-647.