[1] Adamson AW, Gast AP. 1997. Physical Chemistry of Surfaces. 6th ed. New York: John Wiley & Sons, Inc..
[2] Andersen NM, Polhemus JT. 1976. Water-striders (Hemiptera: Gerridae, Veliidae, etc.). In: Cheng L. Marine Insects. Amsterdam: North-Holland Publ. Co, 187–224.
[3] Andersen NM. 1995. Cladistic inference and evolutionary scenarios: Locomotory structure, function, and performance in water striders. Cladistics, 11(3): 279−295. doi:  10.1016/0748-3007(95)90016-0
[4] Armisén D, Nagui Refki P, Crumière AJJ, Viala S, Toubiana W, Khila A. 2015. Predator strike shapes antipredator phenotype through new genetic interactions in water striders. Nature Communications, 6: 8153. doi:  10.1038/ncomms9153
[5] Armisén D, Rajakumar R, Friedrich M, Benoit JB, Robertson HM, Panfilio KA, Ahn SJ, Poelchau MF, Chao H, Dinh H, Doddapaneni HV, Dugan S, Gibbs RA, Hughes DST, Han Y, Lee SL, Murali SC, Muzny DM, Qu JX, Worley KC, Munoz-Torres M, Abouheif E, Bonneton F, Chen T, Chiang LM, Childers CP, Cridge AG, Crumière AJJ, Decaras A, Didion EM, Duncan EJ, Elpidina EN, Favé MJ, Finet C, Jacobs CGC, Cheatle Jarvela AM, Jennings EC, Jones JW, Lesoway MP, Lovegrove MR, Martynov A, Oppert B, Lillico-Ouachour A, Rajakumar A, Refki PN, Rosendale AJ, Santos ME, Toubiana W, van der Zee M, Vargas Jentzsch IM, Lowman AV, Viala S, Richards S, Khila A. 2018. The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water. BMC Genomics, 19: 832. doi:  10.1186/s12864-018-5163-2
[6] Bai F, Wu JT, Gong GM, Guo L. 2014. Biomimetic “water strider leg” with highly refined nanogroove structure and remarkable water-repellent performance. ACS Applied Materials & Interfaces, 6(18): 16237−16242.
[7] Bowdan E. 1978. Walking and rowing in the water strider, Gerris remigis I. A cinematographic analysis of walking. Journal of Comparative Physiology, 123(1): 43−49. doi:  10.1007/BF00657342
[8] Bühler O. 2007. Impulsive fluid forcing and water strider locomotion. Journal of Fluid Mechanics, 573: 211−236. doi:  10.1017/S002211200600379X
[9] Bush JWM, Hu DL. 2006. Walking on water: Biolocomotion at the interface. Annual Review of Fluid Mechanics, 38(1): 339−369. doi:  10.1146/annurev.fluid.38.050304.092157
[10] Bush JWM, Hu DL, Prakash M. 2007. The integument of water-walking arthropods: form and function. Advances in Insect Physiology, 34(147): 117–192.
[11] Caponigro MA, Eriksen CH. 1976. Surface film locomotion by the water strider, Gerris remigis say. The American Midland Naturalist, 95(2): 268−278. doi:  10.2307/2424392
[12] Cassie ABD, Baxter S. 1944. Wettability of porous surfaces. Transactions of the Faraday Society, 40: 546−551. doi:  10.1039/tf9444000546
[13] Cheng YT, Rodak DE. 2005. Is the lotus leaf superhydrophobic?. Applied Physics Letters, 86(14): 144101. doi:  10.1063/1.1895487
[14] Choi CH, Ulmanella U, Kim J, Ho CM, Kim CJ. 2006. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 18(8): 087105. doi:  10.1063/1.2337669
[15] Closa F, Chepelianskii AD, Raphaël E. 2010. Capillary-gravity waves generated by a sudden object motion. Physics of Fluids, 22(5): 052107. doi:  10.1063/1.3430004
[16] Cranston FP, Sprague IB. 1961. A morphological study of the head capsule of Gerris remigis say. Journal of Morphology, 108(3): 287−309. doi:  10.1002/jmor.1051080303
[17] Crumière AJJ, Santos ME, Sémon M, Armisén D, Moreira FFF, Khila A. 2016. Diversity in morphology and locomotory behavior is associated with niche expansion in the semi-aquatic bugs. Current Biology, 26(24): 3336−3342. doi:  10.1016/j.cub.2016.09.061
[18] De La Torre Bueno JR. 1911. The Gerrids of the Atlantic States (Subfamily Gerrinæ). Transactions of the American Entomological Society, 37(3): 243−252.
[19] Denny MW. 1993. Air and Water: the Biology and Physics of Life’s Media. Princeton, N.J.: Princeton University Press.
[20] Dickinson M. 2003. How to walk on water. Nature, 424(6949): 621−622. doi:  10.1038/424621a
[21] Fairbairn DJ. 1985. A test of the hypothesis of compensatory upstream dispersal using a stream-dwelling waterstrider, Gerris remigis say. Oecologia, 66(1): 147−153. doi:  10.1007/BF00378567
[22] Fairbairn DJ, Brassard J. 1988. Dispersion and spatial orientation of Gerris remigis in response to water current: a comparison of pre- and post-diapause adults. Physiological Entomology, 13(2): 153−164. doi:  10.1111/j.1365-3032.1988.tb00919.x
[23] Feng XQ, Gao XF, Wu ZN, Jiang L, Zheng QS. 2007. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir, 23(9): 4892−4896. doi:  10.1021/la063039b
[24] Finet C, Decaras A, Armisén D, Khila A. 2018. The achaete–scute complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proceedings of the Royal Society B: Biological Sciences, 285(1892): 20182387. doi:  10.1098/rspb.2018.2387
[25] Gao P, Feng JJ. 2011. A numerical investigation of the propulsion of water walkers. Journal of Fluid Mechanics, 668: 363−383. doi:  10.1017/S0022112010004763
[26] Gao XF, Jiang L. 2004. Water-repellent legs of water striders. Nature, 432(7013): 36. doi:  10.1038/432036a
[27] Hinton HE. 1976. Plastron respiration in bugs and beetles. Journal of Insect Physiology, 22(11): 1529−1550. doi:  10.1016/0022-1910(76)90221-3
[28] Holdgate MW. 1955. The wetting of insect cuticles by water. Journal of Experimental Biology, 32: 591−617.
[29] Hu DL, Chan B, Bush JWM. 2003. The hydrodynamics of water strider locomotion. Nature, 424(6949): 663−666. doi:  10.1038/nature01793
[30] Hu DL, Bush JWM. 2010. The hydrodynamics of water-walking arthropods. Journal of Fluid Mechanics, 644: 5−33. doi:  10.1017/S0022112009992205
[31] Jabloński PG, Wilcox RS. 1996. Signalling asymmetry in the communication of the water strider Aquarius remigis in the context of dominance and spacing in the non-mating season. Ethology, 102(3): 353−359.
[32] Ji XY, Wang JW, Feng XQ. 2012. Role of flexibility in the water repellency of water strider legs: Theory and experiment. Physical Review E, 85(2): 021607. doi:  10.1103/PhysRevE.85.021607
[33] Junger W, Varjú D. 1990. Drift compensation and its sensory basis in waterstriders (Gerris paludum F.). Journal of Comparative Physiology A, 167(3): 441−446.
[34] Keller JB. 1998. Surface tension force on a partly submerged body. Physics of Fluids, 10(11): 3009−3010. doi:  10.1063/1.869820
[35] Khila A, Abouheif E, Rowe L. 2009. Evolution of a novel appendage ground plan in water striders is driven by changes in the Hox Gene Ultrabithorax. PLoS Genetics, 5(7): e1000583. doi:  10.1371/journal.pgen.1000583
[36] Khila A, Abouheif E, Rowe L. 2014. Comparative functional analyses of ultrabithorax reveal multiple steps and paths to diversification of legs in the adaptive radiation of semi-aquatic insects. Evolution, 68(8): 2159−2170.
[37] Koh JS, Yang E, Jung GP, Jung SP, Son JH, Lee SI, Jablonski PG, Wood RJ, Kim HY, Cho KJ. 2015. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects. Science, 349(6247): 517−521. doi:  10.1126/science.aab1637
[38] Kovac D, Maschwitz U. 1989. Secretion-grooming in the water bug Plea minutissima: a chemical defence against microorganisms interfering with the hydrofuge properties of the respiratory region. Ecological Entomology, 14(4): 403−411. doi:  10.1111/j.1365-2311.1989.tb00942.x
[39] Kovac D, Maschwitz U. 1990. Secretion-grooming in aquatic beetles (Hydradephaga): A chemical protection against contamination of the hydrofuge respiratory region. Chemoecology, 1(3–4): 131−138.
[40] Kovac D. 1993. A quantitative analysis of secretion-grooming behaviour in the water bug Plea minutissima leach (Heteroptera, Pleidae): Control by abiotic factors. Ethology, 93(1): 41−61.
[41] Kwak B, Bae J. 2018. Locomotion of arthropods in aquatic environment and their applications in robotics. Bioinspiration & Biomimetics, 13(4): 041002.
[42] Lafuma A, Quéré D. 2003. Superhydrophobic states. Nature Materials, 2(7): 457−460. doi:  10.1038/nmat924
[43] Lawry JV Jr. 1973. A scanning electron microscopic study of mechanoreceptors in the walking legs of the water strider, Gerris remigis. Journal of Anatomy, 116: 25−30.
[44] Lee DG, Kim HY. 2009. The role of superhydrophobicity in the adhesion of a floating cylinder. Journal of Fluid Mechanics, 624: 23−32. doi:  10.1017/S002211200900593X
[45] Liu JL, Feng XQ, Wang GF. 2007. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water. Physical Review E, 76: 066103. doi:  10.1103/PhysRevE.76.066103
[46] Lu HY, Zheng YL, Yin W, Tao DS, Pesika N, Meng YG, Tian Y. 2018. Propulsion principles of water striders in sculling forward through shadow method. Journal of Bionic Engineering, 15(3): 516−525. doi:  10.1007/s42235-018-0042-8
[47] Moisy F, Rabaud M, Salsac K. 2009. A synthetic Schlieren method for the measurement of the topography of a liquid interface. Experiments in Fluids, 46(6): 1021−1036. doi:  10.1007/s00348-008-0608-z
[48] Murphey RK. 1971a. Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis. Zeitschrift für Vergleichende Physiologie, 72(2): 168−185. doi:  10.1007/BF00297820
[49] Murphey RK. 1971b. Motor control of orientation to prey by the waterstrider, Gerris remigis. Zeitschrift für Vergleichende Physiologie, 72(2): 150−167. doi:  10.1007/BF00297819
[50] Ortega-Jimenez VM, von Rabenau L, Dudley R. 2017. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces. The Journal of Experimental Biology, 220(15): 2809−2815. doi:  10.1242/jeb.157172
[51] Patankar NA. 2004. Transition between Superhydrophobic states on rough surfaces. Langmuir, 20: 7097−7102. doi:  10.1021/la049329e
[52] Perez Goodwyn PJ, Fujisaki K. 2007. Sexual conflicts, loss of flight, and fitness gains in locomotion of polymorphic water striders. Entomologia Experimentalis et Applicata, 124(3): 249−259. doi:  10.1111/j.1570-7458.2007.00571.x
[53] Perez Goodwyn PJ, Wang JT, Wang ZJ, Ji AH, Dai ZD, Fujisaki K. 2008a. Water striders: The biomechanics of water locomotion and functional morphology of the hydrophobic surface (Insecta: Hemiptera-Heteroptera). Journal of Bionic Engineering, 5(2): 121−126. doi:  10.1016/S1672-6529(08)60015-3
[54] Perez Goodwyn PJ, Voigt D, Fujisaki K. 2008b. Skating and diving: Changes in functional morphology of the setal and microtrichial cover during ontogenesis in Aquarius paludum fabricius (Heteroptera, Gerridae). Journal of Morphology, 269(6): 734−744. doi:  10.1002/jmor.10619
[55] Perez Goodwyn P, Katsumata-Wada A, Okada K. 2009a. Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae). Journal of Insect Physiology, 55(9): 855−861. doi:  10.1016/j.jinsphys.2009.06.001
[56] Perez Goodwyn P, Maezono Y, Takamatsu H, Fujisaki K. 2009b. Semiaquatic Heteroptera locomotion: coral treaders (Hermatobates weddi, Hermatobatidae), sea skaters (Halovelia septentrionalis, Veliidae), and water striders (Metrocoris histrio, Gerridae) Usual and unusualgaits. Hydrobiologia, 630(1): 219−229. doi:  10.1007/s10750-009-9794-9
[57] Prakash M, Bush JWM. 2011. Interfacial propulsion by directional adhesion. International Journal of Non-Linear Mechanics, 46(4): 607−615. doi:  10.1016/j.ijnonlinmec.2010.12.003
[58] Rebora M, Salerno G, Piersanti S, Michels J, Gorb S. 2019. Structure and biomechanics of the antennal grooming mechanism in the southern green stink bug Nezara viridula. Journal of Insect Physiology, 112: 57−67. doi:  10.1016/j.jinsphys.2018.12.002
[59] Refki PN, Armisén D, Crumière AJJ, Viala S, Khila A. 2014. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Developmental Biology, 392(2): 441−453. doi:  10.1016/j.ydbio.2014.05.021
[60] Refki PN, Khila A. 2015. Key patterning genes contribute to leg elongation in water striders. EvoDevo, 6(1): 14. doi:  10.1186/s13227-015-0015-5
[61] Rinoshika A. 2012. Vortical dynamics in the wake of water strider locomotion. Journal of Visualization, 15(2): 145−153. doi:  10.1007/s12650-011-0117-7
[62] Roh C, Gharib M. 2019. Honeybees use their wings for water surface locomotion. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24446−24451. doi:  10.1073/pnas.1908857116
[63] Rubenstein DI. 1984. Resource acquisition and alternative mating strategies in water striders. American Zoologist, 24(2): 345−353. doi:  10.1093/icb/24.2.345
[64] Santos ME, Berger CS, Refki PN, Khila A. 2015. Integrating evo-devo with ecology for a better understanding of phenotypic evolution. Briefings in Functional Genomics, 14(6): 384−395. doi:  10.1093/bfgp/elv003
[65] Santos ME, Le Bouquin A, Crumière AJJ, Khila A. 2017. Taxon-restricted genes at the origin of a novel trait allowing access to a new environment. Science, 358(6361): 386−390. doi:  10.1126/science.aan2748
[66] Shi F, Niu J, Liu J, Liu F, Wang Z, Feng XQ, Zhang X. 2007. Towards understanding why a superhydrophobic coating is needed by water striders. Advanced Materials, 19(17): 2257−2261. doi:  10.1002/adma.200700752
[67] Song YS, Suhr SH, Sitti M. 2006. Modeling of the supporting legs for designing biomimetic water strider robots. In: Proceedings of the IEEE International Conference on Robotics and Automation. Orlando, Florida, USA: IEEE, 2303–2310.
[68] Spence JR, Spence DH, Scudder GGE. 1980. Submergence behavior in Gerris: Underwater basking. American Midland Naturalist, 103(2): 385−391. doi:  10.2307/2424638
[69] Steinmann T, Arutkin M, Cochard P, Raphaël E, Casas J, Benzaquen M. 2018. Unsteady wave pattern generation by water striders. Journal of Fluid Mechanics, 848: 370−387. doi:  10.1017/jfm.2018.365
[70] Stys P, Kerzhner I. 1975. The rank and nomenclature of higher taxa in recent Heteroptera. Acta Entomologica Bohemoslovaca, 72: 65−79.
[71] Su YW, Ji BH, Huang YG, Hwang KC. 2010. Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir, 26(24): 18926−18937. doi:  10.1021/la103442b
[72] Sun PY, Zhao MR, Jiang JL, Zheng YL. 2018. The study of dynamic force acted on water strider leg departing from water surface. AIP Advances, 8(1): 015228. doi:  10.1063/1.5012578
[73] Sun SM, Keller JB. 2001. Capillary-gravity wave drag. Physics of Fluids, 13(8): 2146−2151. doi:  10.1063/1.1384889
[74] Thorpe WH, Crisp DJ. 1947. Studies on plastron respiration: I. The biology of Aphelocheirus [hemiptera, Aphelocheiridae (naucoridae)] and the mechanism of plastron retention. Journal of Experimental Biology, 24.
[75] Thorpe WH, Crisp DJ. 1949. Studies on plastron respiration. Part IV. Plastron respiration in the Coleoptera. Journal of Experimental Biology, 26: 219−260.
[76] Thorpe WH. 1950. Plastron respiration in aquatic insects. Biological Reviews, 25(3): 344−390. doi:  10.1111/j.1469-185X.1950.tb01590.x
[77] Uesugi K, Mayama H, Morishima K. 2017. Direct measurement of propelling force of water strider. In: Proceedings of International Symposium on Micro-NanoMechatronics and Human Science (MHS). Nagoya: IEEE, 1–5.
[78] Vargas-Lowman A, Armisen D, Burguez Floriano CF, da Rocha Silva Cordeiro I, Viala S, Bouchet M, Bernard M, Le Bouquin A, Santos ME, Berlioz-Barbier A, Salvador A, Figueiredo Moreira FF, Bonneton F, Khila A. 2019. Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders. Proceedings of the National Academy of Sciences of the United States of America, 116(38): 19046−19054. doi:  10.1073/pnas.1908316116
[79] Vella D, Lee DG, Kim HY. 2006. The load supported by small floating objects. Langmuir, 22(14): 5979−5981. doi:  10.1021/la060606m
[80] Vella D. 2008. Floating objects with finite resistance to bending. Langmuir, 24(16): 8701−8706. doi:  10.1021/la800245k
[81] Vinnichenko NA, Plaksina YY, Baranova KM, Pushtaev AV, Uvarov AV. 2018. Mobility of free surface in different liquids and its influence on water striders locomotion. Environmental Fluid Mechanics, 18(5): 1045−1056. doi:  10.1007/s10652-018-9577-9
[82] Wang QB, Yao X, Liu H, Quéré D, Jiang L. 2015. Self-removal of condensed water on the legs of water striders. Proceedings of the National Academy of Sciences of the United States of America, 112(30): 9247−9252. doi:  10.1073/pnas.1506874112
[83] Wang S, Jiang L. 2007. Definition of superhydrophobic states. Advanced Materials, 19(21): 3423−3424. doi:  10.1002/adma.200700934
[84] Watson GS, Cribb BW, Watson JA. 2010. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider. Acta Biomaterialia, 6(10): 4060−4064. doi:  10.1016/j.actbio.2010.04.016
[85] Wei PJ, Chen SC, Lin JF. 2009a. Adhesion forces and contact angles of water strider legs. Langmuir, 25(3): 1526−1528. doi:  10.1021/la803223r
[86] Wei PJ, Shen YX, Lin JF. 2009b. Characteristics of water strider legs in hydrodynamic situations. Langmuir, 25(12): 7006−7009. doi:  10.1021/la900185a
[87] Wenzel RN. 1936. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8): 988−994.
[88] Wier KA, McCarthy TJ. 2006. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir, 22(6): 2433−2436. doi:  10.1021/la0525877
[89] Wilcox RS. 1979. Sex discrimination in Gerris remigis: Role of a surface wave signal. Science, 206(4424): 1325−1327. doi:  10.1126/science.206.4424.1325
[90] Wilcox RS, Ruckdeschel T. 1982. Food threshold territoriality in a water strider (Gerris remigis). Behavioral Ecology and Sociobiology, 11(2): 85−90. doi:  10.1007/BF00300096
[91] Wilcox RS, Di Stefano J. 1991. Vibratory signals enhance mate-guarding in a water strider (Hemiptera: Gerridae). Journal of Insect Behavior, 4(1): 43−50. doi:  10.1007/BF01092550
[92] Xu L, Yao X, Zheng YM. 2012. Direction-dependent adhesion of water strider’s legs for water-walking. Solid State Sciences, 14(8): 1146−1151. doi:  10.1016/j.solidstatesciences.2012.05.029
[93] Xue YH, Yuan HJ, Su WD, Shi YP, Duan HL. 2014. Enhanced load-carrying capacity of hairy surfaces floating on water. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2165): 20130832. doi:  10.1098/rspa.2013.0832
[94] Yang E, Son JH, Lee S, Jablonski PG, Kim HY. 2016. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. Nature Communications, 7(1): 13698. doi:  10.1038/ncomms13698
[95] Yin W, Zheng YL, Lu HY, Zhang XJ, Tian Y. 2016. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs. Applied Physics Letters, 109(16): 163701. doi:  10.1063/1.4964788
[96] Zheng QS, Yu Y, Zhao ZH. 2005. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 21(26): 12207−12212. doi:  10.1021/la052054y
[97] Zheng QS, Yu Y, Feng XQ. 2009. The role of adaptive-deformation of water strider leg in its walking on water. Journal of Adhesion Science and Technology, 23(3): 493−501. doi:  10.1163/156856108X379155
[98] Zheng YL, Lu HY, Yin W, Tao DS, Shi LC, Tian Y. 2016. Elegant shadow making tiny force visible for water-walking arthropods and updated Archimedes’ principle. Langmuir, 32(41): 10522−10528. doi:  10.1021/acs.langmuir.6b02922
[99] Zhukovskaya M, Yanagawa A, Forschler B. 2013. Grooming behavior as a mechanism of insect disease defense. Insects, 4(4): 609−630. doi:  10.3390/insects4040609