2016 Vol. 37, No. 3

Display Method:
Full issue
Editorial
Review
In this paper, I have introduced the concept of the Evolutionary Species, and shown how it affects the taxonomy of the Artiodactyla of China. The "traditional" taxonomy of the Artiodactyla, which has remained almost unchanged for 100 years, relies on ill-formulated notions of species and subspecies, only slightly modified by the population-thinking of the 1930s. Species are populations (or metapopulations) differentiated by the possession of fixed heritable differences from other such populations (or metapopulations). In the Artiodactyla, there are many more species than "traditionally" recognised; this is by no means a drawback, as it enables the units of biodiversity to be identified in a testable fashion, and brings the taxonomy of large mammals into line with that long practised for small mammals. Species are likely to differentiate where there are natural gaps in the distribution of a genus, such as mountain blocks (for example in the genus Budorcas) or otherwise dissected habitat (for example in the genus Cervus). Natural hybridisation between distinct species is not an uncommon phenomenon, again illustrated well in the genus Cervus, where hybridisation between the elaphus and nippon groups occurs today and evidently occurred in the past, as shown by the distribution of mtDNA.
Articles
Ayu (Plecoglossus altivelis) fish, which are an amphidromous species distributed in East Asia, live in brackish water (BW) during their larval stage and in fresh water (FW) during their adult stage. In this study, we found that FW-acclimated ayu larvae exhibited a slower growth ratio compared with that of BW-acclimated larvae. However, the mechanism underlying FW acclimation on growth suppression is poorly known. We employed transcriptome analysis to investigate the differential gene expression of FW acclimation by RNA sequencing. We identified 158 upregulated and 139 downregulated transcripts in FW-acclimated ayu larvae compared with that in BW-acclimated larvae. As determined by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway mapping, functional annotation of the genes covered diverse biological functions and processes, and included neuroendocrinology, osmotic regulation, energy metabolism, and the cytoskeleton. Transcriptional expression of several differentially expressed genes in response to FW acclimation was further confirmed by real-time quantitative PCR. In accordance with transcriptome analysis, iodothyronine deiodinase (ID), pro-opiomelanocortin (POMC), betaine-homocysteine S-methyltransferase 1(BHMT), fructose-bisphosphate aldolase B (aldolase B), tyrosine aminotransferase (TAT), and Na+-K+ ATPase (NKA) were upregulated after FW acclimation. Furthermore, the mRNA expressions of b-type natriuretic peptide (BNP) and transgelin were downregulated after FW acclimation. Our data indicate that FW acclimation reduced the growth rate of ayu larvae, which might result from the expression alteration of genes related to endocrine hormones, energy metabolism, and direct osmoregulation.
The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, CkIα, CkIδ, Gsk3β, and Gro) of the Wnt/β-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/β-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification.
Carotenoids, which generate yellow, orange, and red colors, are crucial pigments in avian plumage. Investigations into genes associated with carotenoidbased coloration in avian species are important; however, such research is difficult because carotenoids cannot be synthetized in vertebrates as they are only derived from dietary sources. Here, the golden pheasant (Chrysolophus pictus) was used as a model in analysis of candidate gene expression profiles implicated in carotenoid binding and deposition. Using mass and Raman spectrometry to confirm the presence of carotenoids in golden pheasant feathers, we found C40H54O and C40H56O2 in feathers with yellow to red colors, and in the rachis of iridescent feathers. The global gene expression profiles in golden pheasant skins were analyzed by RNA-seq and all six carotenoid binding candidate genes sequenced were studied by realtime PCR. StAR4, GSTA2, Scarb1, and APOD in feather follicles showed different expressions in red breast and orange nape feathers compared with that of iridescent mantle feathers. Further comparison of golden pheasant yellow rump and Lady Amherst's pheasant (Chrysolophus amherstiae) white nape feathers suggested that GSTA2 and APOD played a potential role in carotenoid-based coloration in golden pheasant.
Reports
Owls have the potential to be keystone species for conservation in fragmented landscapes, as the absence of these predators could profoundly change community structure. Yet few studies have examined how whole communities of owls respond to fragmentation, especially in the tropics. When evaluating the effect of factors related to fragmentation, such as fragment area and distance to the edge, on these birds, it is also important in heterogeneous landscapes to ask how ‘location factors’ such as the topography, vegetation and soil of the fragment predict their persistence. In Xishuangbanna, southwest China, we established 43 transects (200 m×60 m) within 20 forest fragments to sample nocturnal birds, both visually and aurally. We used a multimodel inference approach to identify the factors that influence owl species richness, and generalized linear mixed models to predict the occurrence probabilities of each species. We found that fragmentation factors dominated location factors, with larger fragments having more species, and four of eight species were significantly more likely to occur in large fragments. Given the potential importance of these birds on regulating small mammal and other animal populations, and thus indirectly affecting seed dispersal, we suggest further protection of large fragments and programs to increase their connectivity to the remaining smaller fragments.
The Sagalla caecilian (Boulengerula niedeni) is an endangered amphibian endemic to Sagalla Hill in the Taita Hills. This burrowing worm-like species prefers soft soil with high moisture and organic matter. The major threats to the Sagalla caecilian are soil erosion caused by steep slopes, bare ground and water siphoning/soil hardening from exotic eucalyptus trees. The purpose of this study was to get a better understanding of the local people's attitude towards this species and how they can contribute to its continued conservation through restoration of its remaining habitat. In this study, it was found that 96% of Sagalla people are aware of the species, its habits and its association with soils high in organic matter. It was also found that 96% of Sagalla people use organic manure from cow dung in their farms. Habitat restoration through planting of indigenous plants was found to be ongoing, especially on compounds of public institutions as well as on private lands. Although drought was found to be a challenge for seedlings development especially on the low elevation sites, destruction by livestock especially during the dry season is also a major threat. In this study, it was recommended that any future habitat restoration initiative should include strong chain-link fencing to protect the seedlings from livestock activity. Recognizing that the preferred habitats for the species are in the valleys, systematic planting of keystone plant species such as fig trees (Ficus) creates the best microhabitats. These are better than general woodlots of indigenous trees.
Physiological adaptation arises from several fundamental sources of phenotypic variation. Most analyses of metabolic adaptation in birds have focused on the basal metabolic rate (BMR), the lower limit of avian metabolic heat production. In this study, we investigated thermoregulation in three passerine species; the yellow-billed grosbeak Eophona migratoria, white-rumped munia Lonchura striata and black-throated bushtit Aegithalos concinnus, in Wenzhou, China. Metabolic rate was measured using the closed-circuit respirometer containing 3.5 L animal chambers. Body temperature (Tb) was measured during metabolic measurements using a lubricated thermocouple. The minimum thermal conductance of these species was calculated by measuring their Tb and metabolic rates. The yellow-billed grosbeak remained largely normothermic, and the white-rumped munia and black-throated bushtit exhibited variable Tb at ambient temperatures (Ta). Mean metabolic rates within thermal neutral zone were 2.48±0.09 O2(mL)/g/h for yellow-billed grosbeaks, 3.44±0.16 O2(mL)/g/h for white-rumped munias, and 3.55±0.20 O2(mL)/g/h for black-throated bushtits, respectively. Minimum thermal conductance of yellow-billed grosbeak, white-rumped munia and black-throated bushtit were 0.13±0.00, 0.36±0.01, and 0.37±0.01 O2(mL)/g/h/℃, respectively. The ecophysiological characteristics of these species were:(1) the yellowbilled grosbeak had relatively high Tb and BMR, a low lower critical temperature and thermal conductance, and a metabolic rate that was relatively insensitive to variation in Ta; all of which are typical of cold adapted species and explain its broader geographic distribution; (2) the white-rumped munia and blackthroated bushtit had high thermal conductance, lower critical temperature, and relatively low BMR, all which are adapted to warm environments where there is little selection pressure for metabolic thermogenesis. Taken together, these data illustrate small migratory and resident passerines that exhibit the different characteristics of thermoregulation.
Two colepid ciliates, Coleps amphacanthus Ehrenberg, 1833 and Levicoleps biwae jejuensis Chen et al., 2016, were first recorded in China. Their living morphology, infraciliature and small subunit (SSU) rRNA gene sequences were determined using standard methods. The improved diagnosis of Coleps amphacanthus is as follows:cell size about 100×50 μm in vivo, barrel-shaped; 22-28 ciliary rows each composed of about 14-21 monokinetids and two perioral dikinetids; 5-10 caudal cilia; and one terminal contractile vacuole. Levicoleps biwae jejuensis was also investigated, with an improved diagnosis given based on previous and present work. The phylogenetic analyses based on SSU rRNA gene sequences revealed that all Coleps species were grouped together, except for Coleps amphacanthus, which was grouped into a clade of the genus Levicoleps.
Note
The natural distributional range of the cobitid loach Lepidocephalichthys alkaia is extended into Yunnan Province, China. The modified sexually dimorphic pectoral fin in males of L. alkaia is described.