Volume 41 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Wen-Yu Song, Xue-You Li, Zhong-Zheng Chen, Quan Li, Kenneth Otieno Onditi, Shui-Wang He, Xue-Long Jiang. Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages. Zoological Research, 2020, 41(6): 670-683. doi: 10.24272/j.issn.2095-8137.2020.085
Citation: Wen-Yu Song, Xue-You Li, Zhong-Zheng Chen, Quan Li, Kenneth Otieno Onditi, Shui-Wang He, Xue-Long Jiang. Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages. Zoological Research, 2020, 41(6): 670-683. doi: 10.24272/j.issn.2095-8137.2020.085

Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages

doi: 10.24272/j.issn.2095-8137.2020.085
Funds:  This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, 2019QZKK0501), National Key Research and Development Program of China (2017YFC0505202), National Natural Science Foundation of China (31601874), Biodiversity Survey, Monitoring, and Assessment Program (2019HB2096001006), and National Natural Science Foundation of China (31702007)
More Information
  • Corresponding author: E-mail: jiangxl@mail.kiz.ac.cn
  • Received Date: 2020-04-16
  • Accepted Date: 2020-08-18
  • Available Online: 2020-08-30
  • Publish Date: 2020-11-18
  • The interpretation of patterns of biodiversity requires the disentanglement of geographical and environmental variables. Disjunct alpine communities are geographically isolated from one another but experience similar environmental impacts. Isolated homogenous habitats may promote speciation but constrain functional trait variation. In this study, we examined the hypothesis that dispersal limitation promotes taxonomic divergence, whereas habitat similarity in alpine mountains leads to functional convergence. We performed standardized field investigation to sample non-volant small mammals from 18 prominent alpine sites in the Three Parallel Rivers area. We estimated indices quantifying taxonomic and functional alpha- and beta-diversity, as well as beta-diversity components. We then assessed the respective importance of geographical and environmental predictors in explaining taxonomic and functional compositions. No evidence was found to show that species were more functionally similar than expected in local assemblages. However, the taxonomic turnover components were higher than functional ones (0.471±0.230 vs. 0.243±0.215), with nestedness components showing the opposite pattern (0.063±0.054 vs. 0.269±0.225). This indicated that differences in taxonomic compositions between sites occurred from replacement of functionally similar species. Geographical barriers were the key factor influencing both taxonomic total dissimilarity and turnover components, whereas functional beta-diversity was primarily explained by climatic factors such as minimum temperature of the coldest month. Our findings provide empirical evidence that taxonomic and functional diversity patterns can be independently driven by different ecological processes. Our results point to the importance of clarifying different components of beta-diversity to understand the underlying mechanisms of community assembly. These results also shed light on the assembly rules and ecological processes of terrestrial mammal communities in extreme environments.
  • loading
  • [1]
    Allen JA. 1877. The influence of physical conditions in the genesis of species. Radical Review, 1: 108−140.
    [2]
    Alroy J. 2019. Small mammals have big tails in the tropics. Global Ecology and Biogeography, 28(8): 1042−1050.
    [3]
    Barnett A, Dutton J. 1995. Expedition Field Techniques: Small Mammals (Excluding Bats). 2nd ed. London: Royal Geographic Society.
    [4]
    Barry RG. 2008. Mountain Weather and Climate. 3rd ed. Cambridge: Cambridge University Press.
    [5]
    Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1): 134−143. doi: 10.1111/j.1466-8238.2009.00490.x
    [6]
    Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, et al. 2018. Betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.1. https://CRAN.R-project.org/package=betapart.
    [7]
    Bergmann C. 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3: 595−708.
    [8]
    Blanchet FG, Legendre P, Borcard D. 2008. Forward selection of explanatory variables. Ecology, 89(9): 2623−2632. doi: 10.1890/07-0986.1
    [9]
    Brown JH. 1971. Mammals on mountaintops: nonequilibrium insular biogeography. The American Naturalist, 105(945): 467−478. doi: 10.1086/282738
    [10]
    Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there?. Journal of Mammalogy, 99(1): 1−14. doi: 10.1093/jmammal/gyx147
    [11]
    Cadotte MW, Tucker CM. 2017. Should environmental filtering be abandoned?. Trends in Ecology & Evolution, 32(6): 429−437.
    [12]
    Carvalho JC, Malumbres-Olarte J, Arnedo MA, Crespo LC, Domenech M, Cardoso P. 2020. Taxonomic divergence and functional convergence in Iberian spider forest communities: insights from beta diversity partitioning. Journal of Biogeography, 47(1): 288−300. doi: 10.1111/jbi.13722
    [13]
    Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7): 693−715. doi: 10.1111/j.1461-0248.2009.01314.x
    [14]
    Chao AN, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, et al. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1): 45−67. doi: 10.1890/13-0133.1
    [15]
    Chen ZZ, He K, Cheng F, Khanal L, Jiang XL. 2017. Patterns and underlying mechanisms of non-volant small mammal richness along two contrasting mountain slopes in southwestern China. Scientific Reports, 7(1): 13277. doi: 10.1038/s41598-017-13637-0
    [16]
    Cilleros K, Allard L, Grenouillet G, Brosse S. 2016. Taxonomic and functional diversity patterns reveal different processes shaping European and Amazonian stream fish assemblages. Journal of Biogeography, 43(9): 1832−1843. doi: 10.1111/jbi.12839
    [17]
    Corbelli JM, Zurita GA, Filloy J, Galvis JP, Vespa NI, Bellocq I. 2015. Integrating taxonomic, functional and phylogenetic beta diversities: interactive effects with the biome and land use across Taxa. PLoS One, 10(5): e0126854. doi: 10.1371/journal.pone.0126854
    [18]
    Cornwell WK, Schwilk DW, Ackerly DD. 2006. A trait-based test for habitat filtering: convex hull volume. Ecology, 87(6): 1465−1471. doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
    [19]
    Darwin CR. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.
    [20]
    De Arruda Almeida B, Sebastián‐González E, Dos Anjos L, Green AJ, Botella F. 2019. A functional perspective for breeding and wintering waterbird communities: temporal trends in species and trait diversity. Oikos, 128(8): 1103−1115. doi: 10.1111/oik.05903
    [21]
    de Bello F, Thuiller W, Lepš J, Choler P, Clément JC, Macek P, et al. 2009. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 20(3): 475−486. doi: 10.1111/j.1654-1103.2009.01042.x
    [22]
    Denelle P, Violle C, Munoz F. 2019. Distinguishing the signatures of local environmental filtering and regional trait range limits in the study of trait–environment relationships. Oikos, 128(7): 960−971. doi: 10.1111/oik.05851
    [23]
    Díaz S, Lavorel S, Chapin III FS, Tecco PA, Gurvich DE, Grigulis K. 2007. Functional diversity — at the crossroads between ecosystem functioning and environmental filters. In: Canadell JG, Pataki DE, Pitelka LF. Terrestrial Ecosystems in a Changing World. Berlin Heidelberg: Springer, 81–91.
    [24]
    Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, et al. 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9): 2958−2975. doi: 10.1002/ece3.601
    [25]
    Dobrovolski R, Melo AS, Cassemiro FAS, Diniz-Filho JAF. 2012. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21(2): 191−197. doi: 10.1111/j.1466-8238.2011.00671.x
    [26]
    Dreiss LM, Burgio KR, Cisneros LM, Klingbeil BT, Patterson BD, Presley SJ, et al. 2015. Taxonomic, functional, and phylogenetic dimensions of rodent biodiversity along an extensive tropical elevational gradient. Ecography, 38(9): 876−888. doi: 10.1111/ecog.00971
    [27]
    Du YB, Wen ZX, Zhang JL, Lv X, Cheng JL, Ge DY, et al. 2017. The roles of environment, space, and phylogeny in determining functional dispersion of rodents (Rodentia) in the Hengduan Mountains, China. Ecology and Evolution, 7(24): 10941−10951. doi: 10.1002/ece3.3613
    [28]
    Feijó A, Ge DY, Wen ZX, Xia L, Yang QS. 2020. Divergent adaptations in resource-use traits explain how pikas thrive on the roof of the world. Functional Ecology. doi: 10.1111/1365-2435.13609.
    [29]
    Fichaux M, Béchade B, Donald J, Weyna A, Delabie JHC, Murienne J, et al. 2019. Habitats shape taxonomic and functional composition of Neotropical ant assemblages. Oecologia, 189(2): 501−513. doi: 10.1007/s00442-019-04341-z
    [30]
    Fluck IE, Cáceres N, Hendges CD, Brum MDN, Dambros CS. 2020. Climate and geographic distance are more influential than rivers on the beta diversity of passerine birds in Amazonia. Ecography, 43(6): 860−868. doi: 10.1111/ecog.04753
    [31]
    Forsman A, Merilä J, Ebenhard T. 2011. Phenotypic evolution of dispersal-enhancing traits in insular voles. Proceedings of the Royal Society B: Biological Sciences, 278(1703): 225−232. doi: 10.1098/rspb.2010.1325
    [32]
    Frey JK, Bogan MA, Yates TL. 2007. Mountaintop island age determines species richness of boreal mammals in the American Southwest. Ecography, 30(2): 231−240. doi: 10.1111/j.0906-7590.2007.04721.x
    [33]
    Fukami T, Martijn Bezemer T, Mortimer SR, van der Putten WH. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8(12): 1283−1290. doi: 10.1111/j.1461-0248.2005.00829.x
    [34]
    Gainsbury AM, Tallowin OJS, Meiri S. 2018. An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. Mammal Review, 48(3): 160−167. doi: 10.1111/mam.12119
    [35]
    Gaston KJ, Davies RG, Orme CDL, Olson VA, Thomas GH, Ding TS, et al. 2007. Spatial turnover in the global avifauna. Proceedings of the Royal Society B: Biological Sciences, 274(1618): 1567−1574. doi: 10.1098/rspb.2007.0236
    [36]
    Gianuca AT, Declerck SAJ, Lemmens P, De Meester L. 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology, 98(2): 525−533. doi: 10.1002/ecy.1666
    [37]
    Gotelli NJ. 2000. Null model analysis of species co-occurrence patterns. Ecology, 81(9): 2606−2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
    [38]
    Gómez-Rodríguez C, Baselga A. 2018. Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography, 41(11): 1825−1834. doi: 10.1111/ecog.03693
    [39]
    He K, Gutiérrez EE, Heming NM, Koepfli KP, Wan T, He S, et al. 2019. Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island mountains. Journal of Biogeography, 46(10): 2232−2247. doi: 10.1111/jbi.13664
    [40]
    He K, Hu NQ, Chen X, Li JT, Jiang XL. 2016. Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of Southwest China. Heredity, 116(1): 23−32. doi: 10.1038/hdy.2015.62
    [41]
    He K, Jiang XL. 2014. Sky islands of southwest China. I: an overview of phylogeographic patterns. Chinese Science Bulletin, 59(7): 585−597. doi: 10.1007/s11434-013-0089-1
    [42]
    Heaney LR. 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography, 10(1): 15−39. doi: 10.1046/j.1466-822x.2001.00227.x
    [43]
    Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR. 2007. Separating the determinants of phylogenetic community structure. Ecology Letters, 10(10): 917−925. doi: 10.1111/j.1461-0248.2007.01083.x
    [44]
    Hsieh TC, Ma KH, Chao A. 2019. iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.19. http://chao.stat.nthu.edu.tw/blog/software-download/.
    [45]
    Itescu Y. 2019. Are island-like systems biologically similar to islands? A review of the evidence. Ecography, 42(7): 1298−1314. doi: 10.1111/ecog.03951
    [46]
    Keddy PA. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3(2): 157−164. doi: 10.2307/3235676
    [47]
    Kissling WD, Dalby L, Fløjgaard C, Lenoir J, Sandel B, Sandom C, et al. 2014. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecology and Evolution, 4(14): 2913−2930. doi: 10.1002/ece3.1136
    [48]
    Knowles LL. 2001. Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshopprers. Molecular Ecology, 10(3): 691−701.
    [49]
    Körner C. 2012. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Basel: Springer.
    [50]
    Körner C, Paulsen J. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5): 713−732. doi: 10.1111/j.1365-2699.2003.01043.x
    [51]
    Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5): 592−599. doi: 10.1111/1365-2435.12345
    [52]
    Laliberté E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1): 299−305. doi: 10.1890/08-2244.1
    [53]
    Laliberté E, Legendre P, Shipley B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. https://cran.r-project.org/web/packages/FD/index.html.
    [54]
    Lamanna C, Blonder B, Violle C, Kraft NJB, Sandel B, Šímová I, et al. 2014. Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 111(38): 13745−13750. doi: 10.1073/pnas.1317722111
    [55]
    Lampei C, Wunder J, Wilhalm T, Schmid KJ. 2019. Microclimate predicts frost hardiness of alpine Arabidopsis thaliana populations better than elevation. Ecology and Evolution, 9(23): 13017−13029. doi: 10.1002/ece3.5659
    [56]
    Legendre P, De Cáceres M. 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters, 16(8): 951−963. doi: 10.1111/ele.12141
    [57]
    Liu Q, Chen P, He K, Kilpatrick CW, Liu SY, Yu FH, et al. 2012. Phylogeographic study of Apodemus ilex (Rodentia: Muridae) in Southwest China. PLoS One, 7(2): e31453. doi: 10.1371/journal.pone.0031453
    [58]
    Mason NWH, Mouillot D, Lee WG, Wilson JB. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1): 112−118. doi: 10.1111/j.0030-1299.2005.13886.x
    [59]
    Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA. 2010. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography, 19(4): 423−431.
    [60]
    McCain CM. 2005. Elevational gradients in diversity of small mammals. Ecology, 86(2): 366−372. doi: 10.1890/03-3147
    [61]
    Melo AS, Rangel TFLVB, Diniz-Filho JAF. 2009. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography, 32(2): 226−236. doi: 10.1111/j.1600-0587.2008.05502.x
    [62]
    Mod HK, Chevalier M, Luoto M, Guisan A. 2020. Scale dependence of ecological assembly rules: insights from empirical datasets and joint species distribution modelling. Journal of Ecology, 108(5): 1967−1977. doi: 10.1111/1365-2745.13434
    [63]
    Moreno CE, Halffter G. 2000. Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology, 37(1): 149−158. doi: 10.1046/j.1365-2664.2000.00483.x
    [64]
    Mouchet MA, Villéger S, Mason NWH, Mouillot D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4): 867−876. doi: 10.1111/j.1365-2435.2010.01695.x
    [65]
    Mouillot D, Dumay O, Tomasini JA. 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science, 71(3–4): 443−456.
    [66]
    Musila S, Chen ZZ, Li Q, Yego R, Zhang B, Onditi K, et al. 2019. Diversity and distribution patterns of non-volant small mammals along different elevation gradients on Mt. Kenya, Kenya. Zoological Research, 40(1): 53−60. doi: 10.24272/j.issn.2095-8137.2019.004
    [67]
    Nekola JC, White PS. 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26(4): 867−878. doi: 10.1046/j.1365-2699.1999.00305.x
    [68]
    Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning JC. 2009. Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Global Ecology and Biogeography, 18(4): 437−449. doi: 10.1111/j.1466-8238.2009.00451.x
    [69]
    Oksanen J, Blanchet FGB, Friendly MF, Kindt R, Legendre PM, Minchin PR, et al. 2019. Vegan: community ecology package. R package version 2.5–5.
    [70]
    Oliveira BF, Machac A, Costa GC, Brooks TM, Davidson AD, Rondinini C, Graham CH. 2016. Species and functional diversity accumulate differently in mammals. Global Ecology and Biogeography, 25(9): 1119−1130. doi: 10.1111/geb.12471
    [71]
    Opedal ØH, Armbruster WS, Graae BJ. 2015. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity, 8(3): 305−315.
    [72]
    Pan QH, Wang YX, Yan K. 2007. A Field Guide to the Mammals of China. Beijing: China Forestry Publishing House. (in Chinese)
    [73]
    Pavoine S, Bonsall MB. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews, 86(4): 792−812. doi: 10.1111/j.1469-185X.2010.00171.x
    [74]
    Peláez O, Pavanelli CS. 2019. Environmental heterogeneity and dispersal limitation explain different aspects of β-diversity in Neotropical fish assemblages. Freshwater Biology, 64(3): 497−505. doi: 10.1111/fwb.13237
    [75]
    Penone C, Weinstein BG, Graham CH, Brooks TM, Rondinini C, Blair Hedges S, et al. 2016. Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments. Proceedings of the Royal Society B: Biological Sciences, 283(1837): 20161028. doi: 10.1098/rspb.2016.1028
    [76]
    Qian H, Ricklefs RE. 2012. Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography, 21(3): 341−351. doi: 10.1111/j.1466-8238.2011.00672.x
    [77]
    Qu YH, Luo X, Zhang RY, Song G, Zou FS, Lei FM. 2011. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evolutionary Biology, 11(1): 174. doi: 10.1186/1471-2148-11-174
    [78]
    Ramírez-Bautista A, Williams JN. 2019. The importance of productivity and seasonality for structuring small rodent diversity across a tropical elevation gradient. Oecologia, 190(2): 275−286. doi: 10.1007/s00442-018-4287-z
    [79]
    Reymond A, Purcell J, Cherix D, Guisan A, Pellissier L. 2013. Functional diversity decreases with temperature in high elevation ant fauna. Ecological Entomology, 38(4): 364−373. doi: 10.1111/een.12027
    [80]
    Rodríguez D, Ojeda RA. 2014. Scaling functional diversity of small mammals in desert systems. Journal of Zoology, 293(4): 262−270. doi: 10.1111/jzo.12142
    [81]
    Sherman R, Mullen R, Li HM, Fang ZD, Wang Y. 2008. Spatial patterns of plant diversity and communities in alpine ecosystems of the Hengduan Mountains, Northwest Yunnan, China. Journal of Plant Ecology, 1(2): 117−136. doi: 10.1093/jpe/rtn012
    [82]
    Si XF, Baselga A, Leprieur F, Song X, Ding P. 2016. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. Journal of Animal Ecology, 85(2): 409−418. doi: 10.1111/1365-2656.12478
    [83]
    Siefert A, Ravenscroft C, Weiser MD, Swenson NG. 2013. Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Global Ecology and Biogeography, 22(6): 682−691. doi: 10.1111/geb.12030
    [84]
    Smith AT, Xie Y, Hoffmann RS, Lunde D, MacKinnon J, Wilson DE, Wozencraft WC. 2008. A Guide to the Mammals of China. Princeton: Princeton University Press.
    [85]
    Soininen J, McDonald R, Hillebrand H. 2007. The distance decay of similarity in ecological communities. Ecography, 30(1): 3−12. doi: 10.1111/j.0906-7590.2007.04817.x
    [86]
    Spasojevic MJ, Copeland S, Suding KN. 2014. Using functional diversity patterns to explore metacommunity dynamics: a framework for understanding local and regional influences on community structure. Ecography, 37(10): 939−949. doi: 10.1111/ecog.00711
    [87]
    Spasojevic MJ, Suding KN. 2012. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology, 100(3): 652−661. doi: 10.1111/j.1365-2745.2011.01945.x
    [88]
    Stark J, Lehman R, Crawford L, Enquist BJ, Blonder B. 2017. Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. Oikos, 126(11): 1650−1659. doi: 10.1111/oik.04311
    [89]
    Swenson NG. 2014. Functional and Phylogenetic Ecology in R. New York: Springer.
    [90]
    Testolin R, Attorre F, Jiménez-Alfaro B. 2020. Global distribution and bioclimatic characterization of alpine biomes. Ecography, 43(6): 779−788. doi: 10.1111/ecog.05012
    [91]
    Thormann B, Ahrens D, Espinosa CI, Armijos DM, Wagner T, Wägele JW, et al. 2018. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles. Oecologia, 187(1): 181−189. doi: 10.1007/s00442-018-4108-4
    [92]
    Villalobos F, Olalla-Tárraga MÁ, Cianciaruso MV, Rangel TF, Diniz-Filho JAF. 2017. Global patterns of mammalian co-occurrence: phylogenetic and body size structure within species ranges. Journal of Biogeography, 44(1): 136−146. doi: 10.1111/jbi.12826
    [93]
    Villéger S, Grenouillet G, Brosse S. 2013. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22(6): 671−681. doi: 10.1111/geb.12021
    [94]
    Villéger S, Grenouillet G, Brosse S. 2014. Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Global Ecology and Biogeography, 23(12): 1450−1460. doi: 10.1111/geb.12226
    [95]
    Villéger S, Mason NWH, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8): 2290−2301. doi: 10.1890/07-1206.1
    [96]
    Villéger S, Miranda JR, Hernandez DF, Mouillot D. 2012. Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PLoS One, 7(7): e40679. doi: 10.1371/journal.pone.0040679
    [97]
    Wang WL. 2014. Alpine Treeline Patterns and Its Formation Causes in the Three Parallel Rivers Region, NW Yunnan. Ph.D. dissertation, Yunnan University, Kunming. (in Chinese)
    [98]
    Wang WL, Körner C, Zhang ZM, Wu RD, Geng YP, Shi W, et al. 2013. No slope exposure effect on alpine treeline position in the Three Parallel Rivers Region, SW China. Alpine Botany, 123(2): 87−95. doi: 10.1007/s00035-013-0118-3
    [99]
    Weinstein BG, Tinoco B, Parra JL, Brown LM, McGuire JA, Stiles FG, et al. 2014. Taxonomic, phylogenetic, and trait beta diversity in south American hummingbirds. The American Naturalist, 184(2): 211−224. doi: 10.1086/676991
    [100]
    Wells K, Pfeiffer M, Lakim MB, Linsenmair KE. 2004. Use of arboreal and terrestrial space by a small mammal community in a tropical rain forest in Borneo, Malaysia. Journal of Biogeography, 31(4): 641−652. doi: 10.1046/j.1365-2699.2003.01032.x
    [101]
    Wen ZX, Quan Q, Du YB, Xia L, Ge DY, Yang QS. 2016a. Dispersal, niche, and isolation processes jointly explain species turnover patterns of nonvolant small mammals in a large mountainous region of China. Ecology and Evolution, 6(4): 946−960. doi: 10.1002/ece3.1962
    [102]
    Wen ZX, Yang QS, Quan Q, Xia L, Ge DY, Lv X. 2016b. Multiscale partitioning of small mammal β-diversity provides novel insights into the Quaternary faunal history of Qinghai-Tibetan Plateau and Hengduan Mountains. Journal of Biogeography, 43(7): 1412−1424. doi: 10.1111/jbi.12706
    [103]
    Whitmee S, Orme CDL. 2013. Predicting dispersal distance in mammals: a trait-based approach. Journal of Animal Ecology, 82(1): 211−221. doi: 10.1111/j.1365-2656.2012.02030.x
    [104]
    Whittaker RH. 1960. Vegetation of the siskiyou mountains, oregon and California. Ecological Monographs, 30(4): 407. doi: 10.2307/1948435
    [105]
    Whittaker RH. 1972. Evolution and measurement of species diversity. Taxon, 21(2–3): 213−251.
    [106]
    Willig MR, Presley SJ. 2013. Latitudinal gradients of biodiversity. In: Levin SA. Encyclopedia of Biodiversity. 2nd ed. Amsterdam: Academic Press, 612–626.
    [107]
    Zhang R. 1997. The Series of the Scientific Expedition to Hengduan Mountains, Qinghai-Xizang Plateau. Physical Geography of Hengduan Mountains. Beijing: Science Press Beijing. (in Chinese)
  • ZR-2020-085-Supplementary files.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1010) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return