SUPPLEMENTARY MATERIALS

Materials and Methods

Taxon sampling

Our dataset included 13 species of *Polypedates* (*P. otilophus*, *P. colletti*, *P. cruciger*, *P. maculatus*, *P. pseudocruciger*, *P. macrotis*, *P. mutus*, *P. braueri*, *P. impresus*, *P. megacephalus*, *P. teraiensis*, *P. leucomystax*, and *P. discantus*). Eight additional species belonging to the genera *Feihyla*, *Ghatixalus*, and *Taruga*, which are closely related to *Polypedates* (Li et al., 2013), and two outgroup species (*Kurixalus idiootocus* and *Kurixalus banaensis*) were also sampled (Supplementary Table S1). The sampling localities covered most distribution areas, including India, Sri Lanka, South China (including Hainan and Taiwan islands), mainland Southeast Asia (Vietnam, Laos, Thailand, Myanmar, and Bangladesh), Malay Peninsula and associated islands, Sundaland (Borneo, Java, Sumatra, and Sulawesi), Philippine Archipelago, and Japan (Supplementary Figure S1).

DNA extraction, polymerase chain reaction (PCR) amplification, and sequencing

Sequences of mitochondrial (12S rRNA, tRNA^{Val}, and 16S rRNA) and nuclear genes (exon 1 of tyrosinase (TYR), exon 1 of rhodopsin (RHOD), proopiomelanocortin (POMC)) from previous studies (Brown et al., 2010; Grosjean et al., 2015; Haas & Das, 2008; Hasan et al., 2014; Hertwig et al., 2013; Kuraishi et al., 2013; Li et al., 2009, 2013; Matsui et al., 2014a, 2014b; Pan et al., 2013; Rujirawan et al., 2013; Yu et al., 2008) were retrieved from GenBank. Candidate DNA fragments, including three mtDNA and three nuclear DNA fragments of 15 individuals from six species, were newly acquired in this study. Genomic DNA was extracted from either muscle or liver tissues and initially preserved in 95% ethanol. An Ezup Column Animal Genomic DNA Purification Kit (Sangon Biotech, China) was used for genomic DNA extraction, with minor modifications to the manufacturer's protocols. Double-stranded PCR amplifications were conducted in a total volume of 25 μ L, including 12.5 μ L Taq PCR Master Mix (2 X blue dye), 9.5 μ L ddH₂O, 1 μ L FS01, 1 μ L Rend (C=10 μ L/L), and 1 μ L DNA template. For mitochondrial fragments, PCR conditions included an initial denaturation at 95 °C for 3 min, followed by 94 °C denaturation for 1 min, 55 °C annealing for 1 min, and extension at 72 °C for 1 min. A final extension at 72 °C was conducted for 10 min. For TYR, RHOD, and POMC fragments, the same procedure as for mitochondrial DNA was used, but with annealing at 56 °C, 52 °C, and 52 °C, respectively.

Alignment of all gene fragments was conducted using MEGA v.7 (Kumar et al., 2016), rechecked in MAFFT v.7 (Katoh & Standley, 2013), and then adjusted manually, resulting in lengths of 923 bp for 12S rRNA, 74 bp for tRNA^{Val}, 1 468 bp for 16S rRNA, 532 bp for TYR, 316 bp for RHOD, and 571 bp for POMC. All sequences generated in this study were deposited in NCBI GenBank (accession Nos. are indicated in Supplementary Table S1).

Phylogenetic analyses

For the best partitioning scheme and substitution models, we used Bayesian Information Criterion (BIC) calculated in PartitionFinder v.2 (Lanfear et al., 2017). Based on this, our markers were divided into two partitions, i.e., a mitochondrial (12S rRNA gene, tRNA^{Val}, 16S rRNA gene) partition and a nuclear (TYR, RHOD, POMC) partition. The best-fit substitution model was GTR+I+G for the mitochondrial partition and TRNEF+I+G for the nuclear partition. A maximum-likelihood (ML) tree was constructed using RAxML v.8.2.10 (Stamatakis, 2014) with the GTR+Gamma model for our final likelihood search with fast bootstrapping and 1 000 pseudoreplicates. Bootstrap proportions (BSP) were assessed to test node support, with BSP≥70 indicating high support. The Bayesian phylogenetic relationships were determined using MrBayes v.3.2.0 (Ronquist et al., 2012). Two independent runs of Markov chains for 5 000 000 generations were summarized and sampled every 100 generations. The first 25% of sampled trees were discarded as a conservative burn-in. The frequency of nodal resolution, i.e., Bayesian posterior probability (BPP), was determined to assess confidence in the topology. Nodes were considered strongly supported at BPP≥0.95.

Divergence time estimation

We used BEAST v.2.5 (Bouckaert et al., 2019) to determine the phylogenetic tree and divergence times. Site models were set according to the outcome of jModelTest v.2.1.6 (Darriba et al., 2012) for the concatenated mitochondrial partition and nuclear partition separately. The best-fit substitution model was GTR+I+G for the mitochondrial partition and SYM+I+G for the nuclear partition. In light of previously published data (Li et al., 2013), we implemented secondary calibration points for the time of the most recent common ancestor (tMRCA) of *Polypedates, Feihyla, Ghatixalus*, and *Taruga*, implemented as a normal-distributed calibration density (mean=34.5; stdev=2.9; 5%–95% inter-quantile range 29.73–39.27 Ma). We applied a relaxed uncorrelated lognormal clock and a Yule tree prior. Analysis was repeated two times for 50 million generations separately, sampling every 1 000 iterations using the CIPRES Science Gateway (https: //www.phylo.org/portal2/login). We checked for stationarity of the Markov chain and potential autocorrelation (effective sample sizes >200 for all sampled parameters) in Tracer v.1.6 (Rambaut et al., 2013). The first 25% of samples were discarded as burn-in, and the samples of both runs were combined in LogCombiner v.2.5. This file was used in TreeAnnotator v.2.5 to identify and annotate the maximum clade credibility tree. Given the inherent uncertainty of divergence time estimates, we rounded the estimates (95% HPD interval boundaries) to the full million.

Ancestral area estimation

We conducted two biogeographical analyses: (1) a likelihood method under the DIVALIKE+J model and (2) a Bayesian approach under the Bayesian Binary MCMC (BBM) method (Ronquist & Huelsenbeck, 2003) in RASP v.4 (Yu et al., 2015). We defined geographic areas based on established biogeographic and continental boundaries, such as the Red River fault between China and mainland Southeast Asia (Zhang et al., 2010), the Isthmus of Kra between mainland Southeast Asia and the Malay Peninsula (Woodruff, 2010), and the Arakan Mountains between the Indian subcontinent and mainland Southeast Asia. We identified six general areas: Sundaland and Sulawesi (area S), India (area I), mainland Southeast Asia (southwest of the Red River, including the southern part of China but excluding the part of

Vietnam northeast of the Red River) (area D), the Philippines (area P), South China (northeast of the Red River and including the part of Vietnam northeast of the Red River) (area C), and Japan (area J) (Figure 2A).

The DIVALIKE+J model approach was used with the R-package "BioGeoBEARS" (Matzke, 2013). Firstly, we compared six models adopted in this R-package based on their AIC (Akaike's information criterion) weight. Our ancestral range evolution analyses supported DIVALIKE+J as the best fit model to our dataset (LnL=-80.48, AIC weight=167, Supplementary Table S4). For the BBM method, we set the maximum number of ancestral areas to three, used F81 as the state frequencies, and set Gamma distribution as the among-site rate variation. All other parameters were set to default.

To investigate the natural history of insular *P. leucomystax*, we pruned the BEAST maximum clade credibility tree and only left *P. leucomystax* with the R-package "Ape" (Paradis et al., 2004), applying the same DIVALIKE+J approach. The newly defined geographic areas were: S–Sumatra, M–Malay Peninsula, B–Borneo, A–Java, P–the Philippines, J–Japan, and W–Sulawesi (Figure 2B). Before analysis under the DIVALIKE+J model, we grouped all samples within every clade and separated sample 85 from other samples in the same clade as one group, and samples 102 and 103 from the other samples in the same clade as one group, and then estimated the net evolutionary divergence between each group with MEGA v.7 (Kumar et al., 2016) (Figure 2B). Results showed that the distance between groups I and V was 0.01, and between groups VI and VII was 0.004 (Supplementary Table S3);

therefore we considered the species in each clade as cryptic lineages for additional DIVALIKE+J analysis.

REFERENCES

- Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al.
 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. *PLoS Computational Biology*, **15**(4): e1006650.
- Brown RM, Linkem CW, Siler CD, Sukumaran J, Esselstyn JA, Diesmos AC, et al. 2010.
 Phylogeography and historical demography of *Polypedates leucomystax* in the islands of
 Indonesia and the Philippines: evidence for recent human-mediated range expansion?. *Molecular Phylogenetics and Evolution*, 57(2): 598–619.
- Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods*, **9**(8): 772.
- Grosjean S, Ohler A, Chuaynkern Y, Cruaud C, Hassanin A. 2015. Improving biodiversity assessment of anuran amphibians using DNA barcoding of tadpoles. Case studies from Southeast Asia. *Comptes Rendus Biologies*, **338**(5): 351–361.
- Haas A, Das I. 2008. Larval identities of Ansonia hanitschi Inger, 1960 (Amphibia: Bufonidae) and Polypedates colletti (Boulenger, 1890) (Amphibia: Rhacophoridae) from East Malaysia (Borneo). Salamandra, 44(2): 85–100.
- Hasan M, Islam MM, Igawa T, Kurabayashi A, Sumida M, Khan MR, et al. 2014. Genetic divergences of South and Southeast Asian frogs: a case study of several taxa based on

16S ribosomal RNA gene data with notes on the generic name Fejervarya. *Turkish* Journal of Zoology, **38**(4): 389–411.

- Hertwig ST, Schweizer M, Das I, Haas A. 2013. Diversification in a biodiversity hotspot-the evolution of Southeast Asian rhacophorid tree frogs on Borneo (Amphibia: Anura: Rhacophoridae). *Molecular Phylogenetics and Evolution*, 68(3): 567–581.
- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution*, **30**(4): 772–780.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, **33**(7): 1870–1874.
- Kuraishi N, Matsui M, Hamidy A, Belabut DM, Ahmad N, Panha S, et al. 2013. Phylogenetic and taxonomic relationships of the *Polypedates leucomystax* complex (Amphibia). *Zoologica Scripta*, **42**(1): 54–70.
- Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Molecular Biology and Evolution*, **34**(3): 772–773.
- Li JT, Che J, Murphy RW, Zhao H, Zhao EM, Rao DQ, et al. 2009. New insights to the molecular phylogenetics and generic assessment in the Rhacophoridae (Amphibia: Anura) based on five nuclear and three mitochondrial genes, with comments on the evolution of reproduction. *Molecular Phylogenetics and Evolution*, 53(2): 509–522.
- Li JT, Li Y, Klaus S, Rao DQ, Hillis DM, Zhang YP. 2013. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia

during the Oligocene. Proceedings of the National Academy of Sciences of the United States of America, **110**(9): 3441–3446.

- Matsui M, Hamidy A, Kuraishi N. 2014a. A new species of *Polypedates* from Sumatra, Indonesia (Amphibia: anura). *Species Diversity*, **19**(1): 1–7.
- Matsui M, Shimada T, Sudin A. 2014b. First record of the tree-frog genus *Chiromantis* from Borneo with the description of a new species (Amphibia: Rhacophoridae). *Zoological Science*, **31**(1): 45–51.
- Matzke NJ. 2013. BioGeoBEARS: BioGeography with Bayesian (and likelihood) Evolutionary Analysis in R Scripts. Berkeley: University of California.
- Pan SL, Dang NX, Wang JS, Zheng YT, Rao DQ, Li JT. 2013. Molecular phylogeny supports the validity of *Polypedates impresus* Yang 2008. *Asian Herpetological Research*, 4(2): 124–133.
- Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. *Bioinformatics*, **20**(2): 289–290.
- Rambaut A, Suchard MA, Xie D, Drummond AJ. 2013(2018-03-07). Tracer, version 1.6, MCMC trace analysis package. http://tree.bio.ed.ac.uk/software/tracer/.
- Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. *Bioinformatics*, **19**(12): 1572–1574.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61(3): 539–542.

- Rujirawan A, Stuart BL, Aowphol A. 2013. A new tree frog in the genus *Polypedates* (Anura: hacophoridae) from southern Thailand. *Zootaxa*, **3702**(6): 545–565.
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, **30**(9): 1312–1313.
- Woodruff DS. 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today's patterns and the future of the remaining refugial-phase biodiversity. *Biodiversity and Conservation*, **19**(4): 919–941.
- Yu GH, Rao DQ, Yang JX, Zhang MW. 2008. Phylogenetic relationships among Rhacophorinae (Rhacophoridae, Anura, Amphibia), with an emphasis on the Chinese species. *Zoological Journal of the Linnean Society*, **153**(4): 733–749.
- Yu Y, Harris AJ, Blair C, He XJ. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. *Molecular Phylogenetics and Evolution*, **87**: 46–49.
- Zhang DR, Chen MY, Murphy RW, Che J, Pang JF, Hu JS, et al. 2010. Genealogy and palaeodrainage basins in Yunnan Province: phylogeography of the Yunnan spiny frog, *Nanorana yunnanensis* (Dicroglossidae). *Molecular Ecology*, **19**(16): 3406–3420.

Supplementary Figure S1 Collection sites of species in this study

0.4

Supplementary Figure S2 Bayesian phylogenetic relationships of *Polypedates* species based on mitochondrial and nuclear DNA Numbers beside nodes are Bayesian posterior probabilities (BPP).

Supplementary Table S1 Samples, with their locality, museum voucher number, and GenBank accession No. of corresponding sequences. "---"

Partial 12S and 16S and Name Location Voucher No. TYR RHOD POMC Ref. complete t-RNA Val China: Lianhuachi, Taiwan Li et al. 2013 Kurixalus idiootocus SCUM 061107L EU215547 -----------Kurixalus banaensis Vietnam: Krong Pa, Gia Lai Li et al. 2013 ROM32986 GQ285667 ---------KC961241 Feihyla kajau Malaysia: Kubah Natl. Park, Sarawak KC961180 Hertwig et al.2013 1 NMBE 1057090 KC961234 ---KC961088 Malaysia: Gunung Mulu Natl. Park, KC961240 2 Feihyla kajau NMBE 1056500 KC961233 KC961179 Hertwig et al.2013 ----Sarawak JN377362 3 Feihyla palpebralis China: Mt. Dawei, Yunnan SCUM 0606132L EU215606 EU215576 GQ285741 Li et al. 2013 EU215546 Feihyla palpebralis 4 Viet Nam: Lam Dong 712 GQ285681 GQ285810 GQ285792 GQ285740 Li et al. 2009 GQ204773 5 Feihyla vittatus Laos FMNH255217 GQ204658 Li et al. 2013 ------GQ204722 6 Feihyla vittatus China: Simao, Yunnan KIZ 0001Rao GQ285684 GQ285811 GQ285793 GQ285742 Li et al. 2013 7 Feihvla vittatus Thailand:Song Khla Buri KUHE:19441 AB813162 Matsui et al. 2014a ---------8 Feihyla vittatus Vietnam: Ankhe District, Gia Lai FMNH 254444 DQ283134 DO283835 Li et al. 2013 -------9 Feihyla hansenae Thailand:Nam Tok Hongkaew KUHE:34136 AB813161 Matsui et al. 2014a ---------India VUB 0025 EU178098 Li et al. 2013 10 Ghatixalus asterops ---------

represents missing data and "*" represents new sequences in this study.

11	Ghatixalus variabilis	India	VUB 0061	EU178099				Li et al. 2013
12	Ghatixalus variabilis	India	TBGRI2001.0081	AY880522				Li et al. 2013
13	Taruga eques	Sri Lanka	WHT2741	AY141847				Li et al. 2013
14	Taruga eques	Sri Lanka	WHT2741	GQ204689		GQ204633		Li et al. 2013
15	Taruga eques	Sri Lanka		AY920531				Li et al. 2013
16	Taruga fastigo	Sri Lanka	WHT2783	GQ204690		GQ204634		Li et al. 2013
17	Polypedates otilophus	Indonesia:Sumatra	MZB:Amp16303	AB907710	AB907736	AB907730	AB907724	Genbank
18	Polypedates otilophus	Indonesia:Sumatra	MZB:Amp16304	AB907713	AB907737	AB907731	AB907725	Matsui et al. 2014b
19	Polypedates otilophus	Malaysia: Bongon, N. Borneo	KUHE:17264	AB907717				Matsui et al. 2014b
20	Polypedates otilophus	Malaysia:Sarawak, Kanowit	KUHE:42555	AB728190	AB728320	AB728286	AB728247	Kuraishi et al. 2013
21	Polypedates otilophus	Malaysia:Borneo	BORN:08158	AB907714	AB907738	AB907732	AB907726	Genbank
22	Polypedates colletti	Malaysia: Kuching,Sarawak	ZMH A09362	EF566974				Haas et al. 2008
23	Polypedates colletti	Indonesia:Sumatra,Lampung		AB728189	AB728319	AB728285	AB728246	Kuraishi et al. 2013
24	Polypedates colletti	Indonesia: Kerangas Deer Pond	ZRC 11914	EF624066				Li et al. 2013
25	Polypedates colletti	Malaysia: Loagan Bunut NP, Sarawak	ZRC 11912	EF566973				Li et al. 2013
26	Polypedates cruciger	Sri Lanka		AF249045	AF249187	AF249124		Li et al. 2013
27	Polypedates maculatus	India:Bihar, Rajgir	KUHE:42336	AB728188	AB728318	AB728284	AB728245	Kuraishi et al. 2013
28	Polypedates maculatus	India: Thekkatte	PM-K.T62.2010	JF832394				Nair (Unpublished)
29	Polypedates maculatus	India: Western Ghats, Mangalore, Bajipe		AB167934				Li et al. 2013
30	Polypedates pseudocruciger	India:Bajipe	RBRL 070722	AB530551				Hasan et al. 2014
31	Polypedates macrotis	Malaysia:Sarawak, Kanowit	KUHE:42556	AB728187	KC961218		KC961185	Kuraishi et al. 2013

32	Polypedates macrotis	Tawi-tawi Isl.	ELR 0181	HM770139				Brown et al. 2010
33	Polypedates macrotis	Tawi-tawi Isl.	ELR 0180	HM770138				Brown et al. 2010
34	Polypedates mutus	Thailand: Prachuap Khiri Khan, Kui Buri NP	0934Y	KR828028				Grosjean et al. 2015
35	Polypedates mutus	Viet Nam: Ha Tinh, Huong Son	AMNH A161395	DQ283048		DQ283777		Li et al. 2013
36	Polypedates cf. mutus 1	China: Guangxi	CIB 2851K	AB728018	AB728309	AB728275	AB728236	Kuraishi et al. 2013
37	Polypedates mutus	Vietnam: Kon Tum, Kon PLong	VN2018037	MW266017*		MW265994*	MW266011*	this study
38	Polypedates mutus	China: Bawangling, Hainan	MVZ 236721	HM770157				Brown et al. 2010
39	Polypedates mutus	China: Mt. Wuzhi, Hainan	HN 0806105	KC465831				Li et al. 2013
40	Polypedates cf. mutus 1	China: Hainan	CIB 20081090	AB728019	AB728310	AB728276	AB728237	Kuraishi et al. 2013
41	Polypedates discantus	Thailand: Hat Yai District, Songkhla	ZMKU AM 00991	KF303478				Rujirawan et al.2013
42	Polypedates discantus	Thailand: Hat Yai District, Songkhla	ZMKU AM 00992	KF303479				Rujirawan et al.2013
43	Polypedates discantus	Thailand: Hat Yai District, Songkhla	ZMKU AM 01006	KF303476				Rujirawan et al.2013
44	Polypedates discantus	Thailand: Hat Yai District, Songkhla	ZMKU AM 00993	KF303480				Rujirawan et al.2013
45	Polypedates discantus	Thailand: Hat Yai District, Songkhla	ZMKU AM 01005	KF303475				Rujirawan et al.2013
46	Polypedates braueri	China: Yingjiang, Yunnan	YN2018051	MW266020*	MW269971*	MW265992*	MW266007*	this study
47	Polypedates braueri	China: Yingjiang, Yunnan	LABYN2018026	MW266024*		MW265999*	MW266013*	this study
48	Polypedates braueri	Thailand: Phitsanulok, Phu Hin Rong	0904Y	KR827990				Grosjean et al. 2015

			Kla NP						
	49	Polypedates braueri	China: Fenshuiling, Luchun, Yunnan	LC 0805095	KF053211				Pan et al. 2013
	50	Polypedates braueri	Viet Nam: Lao Cai, Sapa	TAD_B12	KR827989				Grosjean et al. 2015
	51	Polypedates braueri	China:Sichuan, Omei		AB728015				Kuraishi et al. 2013
	52	Polypedates braueri	China:Guangxi, Nanning	KUHE:33625	AB728009				Kuraishi et al. 2013
	50	Dahara datar harawai	China Zhaiinna Tiantai	CIB <chn>:ZJ20</chn>	AD729000				Kanaishi at al 2012
	55	Polypeaales braueri	China:Znejiang, Hantai	0806091	AB/28000				Kuraisni et al. 2013
	54	Dahara datar harawai	China lineari 7ini	CIB <chn>:JX20</chn>	10722002				Kamaiahi at al 2012
	54	Polypeaales braueri	China:Jiangxi, Zixi	0806183	AB/28002				Kuraisni et al. 2013
	55	Polypedates braueri	China: Taipei, Taiwan	KUHE:32842	AB564281				Kuraishi et al. 2013
	56	Polypedates braueri	China: Nantou, Taiwan	KUHE:12973	AB727998				Kuraishi et al. 2013
_	57	Polypedates braueri	China: Chiai, Taiwan	KUHE:12971	AB564278	AB728307	AB728273	AB728234	Kuraishi et al. 2013
	58	Polypedates braueri	China: Yunnan	KUHE37040	AB728016	AB728308	AB728274	AB728235	Kuraishi et al. 2013
	59	Polypedates braueri	China: Motuo, Xizang	KIZ 6214	KC465836	GQ285809	GQ285791	GQ285737	Li et al. 2013
	60	Polypedates impresus	China: Puer, Yunnan	YN2018159	MW266029*	MW269969*	MW265990*	MW266005*	this study
	61	Polypedates impresus	China: Menglun, Yunnan	YN2018206	MW266030*	MW269968*	MW265989*	MW266004*	this study
	62	Polypedates impresus	China: Mengyang, Yunnan	YN2018355	MW266031*	MW269967*	MW265988*	MW266003*	this study
	63	Polypedates impresus	China: Jinghong, Yunnan	BN2018016	MW266021*	MW269976*	MW266001*		this study
	64	Polypedates impresus	China: Mengyang, Yunnan	BN2018130	MW266022*	MW269977*	MW266002*	MW266016*	this study
	65	Polypedates impresus	Viet Nam: Lang So'n, Dat	K1418	KR827996				Grosjean et al. 2015
	66	Polypedates impresus	China: Xishuangbanna, Yunnan	SCUM 37940C	EU215551	EU215611	EU215581	GQ285738	Li et al. 2013
	67	Polypedates impresus	Laos: Phongsali, Long Nai Khao	2004.0366	KR827997				Grosjean et al. 2015
	68	Polypedates impresus	China:Yingjiang,Yunnan	YN2018101	MW266028*	MW269970*	MW265991*	MW266006*	this study

69	Polypedates megacephalus	Vietnam: Kon Tum, Kon PLong	VN2018026	MW266026*	MW269978*	MW265997*	MW266009*	this study
70	Polypedates megacephalus	Vietnam: Kon Tum, Kon PLong	VN2018038	MW266018*	MW269973*	MW265995*	MW266010*	this study
71	Polypedates megacephalus	Vietnam: Kon Tum, Kon PLong	VN2018059	MW266019*	MW269972*	MW265993*	MW266008*	this study
72	Polypedates megacephalus	Thailand: Trat, Namtok Ko Chang	KUHE:20219	AB728091				Kuraishi et al. 2013
73	Polypedates megacephalus	Laos: Vientian, Vientian	KUHE:40655	AB728072				Kuraishi et al. 2013
74	Polypedates megacephalus	Thailand: Prachuap Khiri Khan, Kui Buri NP	0946Y	KR828024	AB728312	AB728278	AB728239	Grosjean et al. 2015
75	Polypedates megacephalus	Vietnam: Kon Tum, Kon PLong	VN2018036	MW266027*	MW269974*	MW265996*	MW266012*	this study
76	Polypedates megacephalus	China: Hong Kong	HK20181012	MW266023*	MW269979*	MW266000*	MW266015*	this study
77	Polypedates megacephalus	China: Hainan, Diaoluoshan	CIB <chn>:0703 4</chn>	AB728035				Kuraishi et al. 2013
78	Polypedates megacephalus	China: Hainan Island	SN030056	EF564487 EF564559	AB728311	AB728277	AB728238	Yu et al. 2008
79	Polypedates megacephalus	Viet Nam: Vinh Phu, Hanoi	KUHE:38482	AB728050				Kuraishi et al. 2013
80	Polypedates teraiensis	Myanmar:Chatthin	KUHE:33880	AB728167				Kuraishi et al. 2013
81	Polypedates teraiensis	Bangladesh: Sunamganj, Bisampur	DFBGBAU Pter 179	AB530519				Hasan et al. 2014
82	Polypedates teraiensis	Bangladesh: Bandarban, Sadar Thana	DFBGBAU Pter 402	AB530521				Hasan et al. 2014
83	Polypedates teraiensis	Bangladesh: Mymensingh, Char Nilokhia	DFBGBAU Pter 202-211	AB530513				Hasan et al. 2014
84	Polypedates teraiensis	Bangladesh: Tangail, Modhupur	IABHU F4040	AB530516				Hasan et al. 2014
85	Polypedates leucomystax	Indonesia: Sumatra, Brostagi	KUHE:23556	AB728129				Kuraishi et al. 2013

86	Polypedates leucomystax	Thailand: Surat Thani, Ko Samui	KUHE:19546	AB728096				Kuraishi et al. 2013
87	Polypedates leucomystax	Malaysia	M20190701	MW266025*	MW269975*	MW265998*	MW266014*	this study
88	Polypedates leucomystax	Malaysia: Sabah, Tempaluri	BORN:22430	AB728144				Kuraishi et al. 2013
89	Polypedates leucomystax	Malaysia: Sabah, Imbak		AB728145				Kuraishi et al. 2013
00	Delan electric las constant	Malaysia: Terengganu, Lata	VIIIE.50275	AD720110				Kamaiahi at al 2012
90	Polypeaales leucomyslax	Tembakoh	KUHE:52575	AB/28110				Kuraisni et al. 2013
91	Polypedates leucomystax	Thailand: Narathiwat, Hala-Bala	KUHE:23173	AB728101				Kuraishi et al. 2013
92	Polypedates leucomystax	Malaysia: Seangor, Mimaland	KUHE:15164	AB728117				Kuraishi et al. 2013
93	Polypedates leucomystax	Malaysia: Sarawak, Kapit	KUHE:53147	AB728148				Kuraishi et al. 2013
94	Polypedates leucomystax	Malaysia: Sarawak, Matang	KUHE:12042	AB728152				Kuraishi et al. 2013
95	Polypedates leucomystax	Malaysia: Langkawi Island	IABHU 21119	AB530570				Hasan et al. 2014
96	Polypedates leucomystax	Malaysia: Sarawak, Sammunsan	KUHE:17605	AB728151				Kuraishi et al. 2013
97	Polypedates leucomystax	Malaysia: Sarawak, Kuching	KUHE:17684	AB728150				Kuraishi et al. 2013
98	Polypedates leucomystax	Malaysia: Kuala Lumpur	KUHE:15774	AB728116				Kuraishi et al. 2013
99	Polypedates leucomystax	Malaysia: Perak, Larut	KUHE:15517	AB728107				Kuraishi et al. 2013
100	Polypedates leucomystax	Malaysia: Pahang, Fraser's Hill	KUHE:15157	AB728108				Kuraishi et al. 2013
101	Polypedates leucomystax	Malaysia: Selangor, Kanching	KUHE:52576	AB728114				Kuraishi et al. 2013
102	Polypedates leucomystax	Indonesia: Java, Temanggung		AB728135				Kuraishi et al. 2013
103	Polypedates leucomystax	Indonesia: Java, Yogyakarta		AB728136				Kuraishi et al. 2013
104	Polypedates leucomystax	Philippines: Municipality of Dingasan	ACD 0890	HM770385				Brown et al. 2010
105	Polypedates leucomystax	Japan: Okinawajima, Kunigami	KUHE:22556	AB728165				Kuraishi et al. 2013
106	Polypedates leucomystax	Philippines: Panay, Iloilo	KUHE:34396	AB728164				Kuraishi et al. 2013
107	Polypedates leucomystax	Japan: Miyakojima	KUHE:37793	AB728166				Kuraishi et al. 2013

108	Polypedates leucomystax	Indonesia: Sulawesi, Banggai	MZB:Amp8026	AB728155				Kuraishi et al. 2013
109	Polypedates leucomystax	Indonesia: Sulawesi, Bolaang	MZB:Amp8024	AB728154				Kuraishi et al. 2013
		Mongondow						
110	Polypedates leucomystax	Indonesia: Sulawesi, Polewali	MZB:Amp12444	AB728158				Kuraishi et al. 2013
111	Polypedates leucomystax	Indonesia: Sulawesi, Soppeng	MZB:Amp12884	AB728160				Kuraishi et al. 2013
112	Polypedates leucomystax	Indonesia: Sulawesi, Benteng	MZB:Amp12531	AB728163				Kuraishi et al. 2013
113	Polypedates leucomystax	Indonesia: Java, Depok	MZB:UN tissue	AB564287				Kuraishi et al. 2013
114	Polypedates leucomystax	Indonesia: Java, Bogor		AB728134				Kuraishi et al. 2013
115	Polypedates leucomystax	Indonesia: Java, Banyuwangi	MZB:UN tissue	AB564285	AB728313	AB728279	AB728240	Kuraishi et al. 2013
116	Polypedates leucomystax	Indonesia: Banka, Tempilang		AB728133				Kuraishi et al. 2013
117	Polypedates leucomystax	Indonesia: Sumatra, Lubuk Sikaping		AB728131				Kuraishi et al. 2013
118	Polypedates leucomystax	Indonesia: Sumatra, Palembang		AB728132				Kuraishi et al. 2013
119	Polypedates leucomystax	Indonesia: Kalimantan, Sambojo		AB728153				Kuraishi et al. 2013

Supplementary Table S2 Primers used in this study

Locus	Primer	Primer sequence	Size (bp)	Cited source
Partial 12S and 16S ribosomal genes and the complete valine t-RNA	FS01	5'-AAC GCT AAG ATG AAC CCT AAA AAG TTC T-3'	2465	Wilkinson et al. (2002a)
	Rend	5'-GAC CTG GAT TAC TCC GGT CTG A-3'		Wilkinson et al. (2002a)
	F0483	5'-GAA GAG GCA AGT CGT AAC ATG G -3'		Wilkinson et al. (2002a)
	F1209	5'-CTC GTA CCT TTT GCA TCA TG-3'		Yangtong (2018)
	R1209	5'-CAT GAT GCA AAA GGT ACG AG-3'		Yangtong (2018)
Exon 1 of tyrosinase	L2976	5'-TGC TGG GCR TCT CTC CAR TCC CA-3'	532	Bossuyt & Milinkovitch(2000)
	H2977	5'-AGG TCC TCY TRA GGA AGG AAT G-3'		Bossuyt & Milinkovitch(2000)
Exon 1 of rhodopsin	L2903	5'-ACC ATG AAC GGA ACA GAA GGY CC-3'	316	Bossuyt & Milinkovitch(2000)
	H2904	5'-GTA GCG AAG AAR CCT TCA AMG TA-3'		Bossuyt & Milinkovitch(2000)
Proopiomelanocortin	POMC-1	5' -GAA TGT ATY AAA GMM TGC AAG ATG GWC CT-3'	571	Wiens et al. (2005b)
	POMC-7	5' -TGG CAT TTT TGA AAA GAG TCA T-3'		Smith et al.(2005)

	Ι	II	III	IV	V	VI	VII
Ι							
II	0.007						
III	0.021	0.020					
IV	0.024	0.022	0.030				
V	0.024	0.022	0.028	0.010			
VI	0.024	0.024	0.030	0.024	0.022		
VII	0.025	0.025	0.032	0.025	0.022	0.004	

Supplementary Table S3 Estimates of net evolutionary divergence between groups of sequences of Polypedates leucomystax

Supplementary Table S4 Parameters from ancestral range evolution analysis of *Polypedates*

conducted in "BioGeoBEARS"

Model	LnL	Parameters	d	e	j	AIC	AIC_wt
DEC	-98.78	2	0.0041	1.00E-12	0	201.6	2.20E-08
DEC+J	-81.37	3	1.00E-12	8.20E-10	0.015	168.7	0.29
DIVALIKE	-96.04	2	0.0059	1.00E-12	0	196.1	3.40E-07
DIVALIKE+J	-80.48	3	1.00E-12	1.00E-12	0.015	167	0.7
BAYAREALIKE	-152.6	2	0.0047	0.064	0	309.2	8.90E-32
BAYAREALIKE+J	-85.06	3	1.00E-07	1.00E-07	0.017	176.1	0.0072