
SUPPLEMENTAL TEXT:

1. Data types used in COSINE
Fastq files:

Raw sequencing data to be processed of tumor-normal paired sample, usually, a
minimum sequencing depth is 60x for whole exome sequencing (WES) and 30x for
whole genome sequencing (WGS) for clonal evolution analysis.

Variant call format (VCF) files:

The VCF file generally records the detailed information of the SNP in the genome.
This file is usually generated by varscan2/mutect2 or strelka, and generally used as the
input data of the tumor evolution analysis software in the computing platform.

Other files:

Other types of files can also be processed with COSINE, mainly including input
files of 12 kinds of analysis software, or the intermediate generated files of each
software. The formats of these files include not only txt, csv, yaml and so on.

2. Variation calling process
Step-1: Alignment and sorting of sequencing data to reference sequences

In this step, raw clean sequencing data will alignment to the reference genome by
BWA software package. The alignment results are saved in sam format, but the sam file
is too large, and samtools was used to convert the sam file to bam file.
bwa mem -t 24 -M -Y -R \
"@RG\tID:${sampleID}\tPL:illumina\tLB:WGS\tSM:${sampleID}" \
$reference $fasgq1 $fastq2 > ${sampleID}.WGS.sam

The comparison results obtained from BWA files need to be further processed by
the samtools. It can sort, merge and index the bam files, and convert sam files into bam
files. view function of samtools for converting the sam file into bam files with .more
than 6 times less in size, and sort function for sorting the bam files, -@ parameter was
set the number of number of CPU used for parallel computing, -o parameter was set the
output file name:
samtools view -Sb ${sampleID}.WGS.sam > ${sampleID}.WGS.bam
samtools sort -@ 24 -o ${sampleID}.WGS.sorted.bam ${sampleID}.WGS.bam

Step-2: Base calibration via GTAK toolkits

The GATK can mark duplication reads in the alignment bam file, which caused by
PCR amplification and other reasons. In the specific command, -I set the input file name,
-O controls the output file name, and -REMOVE_DUPLICATES represents whether to
delete the repeated sequence.
gatk MarkDuplicates -I ${sampleID}.WGS.sorted.bam \
-O ${sampleID}.WGS.sorted.markdup.bam \
-M ${sampleID}.WGS.sorted.markdup.txt \

-REMOVE_DUPLICATES true

The BQSR process in the GATK is contain two steps. First is using the known
mutation information to filter the sequencing result data, the software can generate an
intermediate file in the table format. Second is using the table file, the sequencing data
and the reference, the software can make the final removal of untrusted mutation sites
in sequencing data.
gatk BaseRecalibrator -R $reference \
-I ${sampleID}.WGS.sorted.markdup.bam \
--known-sites $known_indel1 --known-sites $known_snp \
--known-sites $known_indel2 -O ${sampleID}.table

gatk ApplyBQSR --bqsr-recal-file ${sampleID}.table \
-R $reference -I ${sampleID}.WGS.sorted.markdup.bam \
-O ${sampleID}.WGS.sorted.markdup.bqsr.bam

Step-3: Single nucleotide variations (SNV) calling

In this step, we use varscan2 or mutect2 in the GATK to detect the SNV in the
adjused BAM file.
#mutect2:
gatk Mutect2 -R $reference -I ${sampleID}.WGS.sorted.markdup.bqsr.bam\
-L $interval_list -O ${sampleID}.WGS.mutect2.vcf

gatk FilterMutectCalls -V ${sampleID}.WGS.mutect2.vcf \
-O ${sampleID}.WGS.somatic.vcf -R $reference

#Varscan2:
varscan somatic < (samtools mpileup \
--no-BAQ -f $reference \
$normal_contral.sorted.markdup.bam \
${sampleID}.WGS.sorted.markdup.bam) \
$output_dir --mpileup 1 --output-vcf --min-coverage-tumor 15 \
--min-coverage-norml 12 --somatic-p-value 0.01

varscan processSomatic ${sampleID}.WGS.snp.vcf
varscan processSomatic ${sampleID}.WGS.indel.vcf

Figure 1 is a result file, which is include of SNV and indel mutation detected by

varscan2. In the following chapters, we will filter out the somatic variation from the
output files as the analysis sample.

Figure 1 The results of varscan2 are saved in VCF format

Step-4: Copy number variation calling

In addition to SNP variation, genome variation includes copy number variation
and structure variation. In COSINE, sclust is used to detect the variation of copy number.
Sclust bamprocess -t ${sampleID}.WGS.sorted.markdup.bqsr.bam \

-n ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-o ${sampleID} -part 2 -build hg38 -r chr1

Sclust bamprocess -t ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-n ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-o ${sampleID} -part 2 -build hg38 -r chr2

...##running for all 24 chorosomes
Sclust bamprocess -i ${sampleID}. -o ${sampleID}.
Sclust cn -rc ${sampleID}_rcount.txt -snp ${sampleID}_snps.txt \
-vcf ${sclust}.input.vcf -o ${sampleID} --ns 1000

Figure 2 shows the copy number variation detected by the Sclust, and the purity
and ploidy of the tumor-normal paired genomic data. In addition, copy number (brown)
and minor allele copy number (green) of each chromosome were shown.

Figure 2 The result file of the Sclust running cn function

3. Preprocess of subclonal inference
here is a workflow for convert VCF file to different subclonal inference method.

Figure 3 Method of format conversion

Step-1: Convert the SNP information into the input format of Sclust

On the basis of input file conversion, the software of mutation detection and
evolutionary analysis can dock without data loss, and the analysis process of tumor cell
information is improved. The platform can use the same data to evaluate the
performance of different software, and provides reliable and stable running results.
The function of the script named varscanTosclust.py is to convert varscan2 output file
to sclust input file. -i represents varscan software indel detection result; -s represents
varscan software snp detection result; -o means the file name of conversion result.
python $map_dir/bash/varscanTosclust.py -i $varscan2.out.indel.vcf \
 -s $varscan2.out.snp.vcf \

-o ${sclust}.input.vcf
The function of the script named mutectTosclust.py is to convert mutect2 output

file to sclust input file. -i represents varscan software indel detection result; -o means
input conversion result file name
python $map_dir/bash/mutectTosclust.py -i $varscan2.out.indel.vcf \

-o ${sclust}.input.vcf
The function of the script named sclust_to_pyclone.py is to convert sclust output

file to Pyclone input file. -i represents allele information file, which can be obtained by
sclust; -n means a sample name to control the output file name; -v the vcf file for sclust,
and the previous The output files of the two scripts are the same.
python $map_dir/bash/sclust_to_pyclone.py -i ${sclust}.allelic.txt \
 -n $sample_name \
 -v ${sclust}.input.vcf \

-o $output path of Directory
The function of the script named sclust_to_fastclone.py is to convert sclust output

file to FastClone input file. Fastclone has the same input format as pyclone, so the

(b). M
ajor and minor

of CN

Mutect
or varscan2

Format
(snp; vcf)

Sclust cn
Format
(cn; tsv)

+
(a). Convert to sclust

input file

(c). VAF of each SNP

Sclust clust
Pyclone

FastClone
Dpclust

 phyloWGs
 SciClone
Svclone

CLiP
TrAp

CITUP
CloneFinder
PhylogicNDT

(d) Input file format conversion

conversion script is the same.
python $map_dir/bash/ sclust_to_fastclone.py -i ${sclust}.allelic.txt \
 -n $sample_name \
 -v ${sclust}.input.vcf \

-o $output path of Directory
The following is an example of a conversion file. Figure 4 (A) represents the

output file of varscan, and Figure 4 (B) represents the input file of sclust after
conversion.

Figure 4 (A) The result file of varscan2.

Figure 4 (B) The converted file for sclust.

Step-2 Use the CN command in Sclust

This step is responsible for calculating copy number variation (CNV), major and
minor of copy number, clone copy number fraction (CCF), ploidy and purity in the
WGS data.
Sclust cn -rc ${sampleID}_rcount.txt -snp ${sampleID}_snps.txt \
-vcf ${sclust}.input.vcf -o ${sampleID} --ns 1000

Step-3 Get VAF information from SNP file.
VAF can be found in the VCF format file, that is, the contents marked by the red

box in Figure 4(a). The VAF value can be extracted by using the script in step 1

Step-4 Convert the format of input file.

The input formats of the 12 kinds of software are different. According to the
different input formats, python scripts are used to format and output the data. Taking
the detection results of mutect2 as an example, the document shows the output formats
of 12 methods.
(a) Call pandas;

Pandas, which is a python extension package for processing big data.
import pandas as pd

(b) Use Python to read the detection results of mutect2;
The parameter path represents the path of the vcf file.

f = open(path, 'r')

df = pd.read_csv(f,sep='\t',header=None,comment='#')

df.columns =['CHROM','POS','ID','REF','ALT','QUAL','FILTER','INFO','FORMAT','TUMOR']

print("read end")

(c) calculate the VAF value at each variant locus.
Obtain the reference depth reading and allele reading depth to calculate the VAF

value at each variant locus.
df_TUMOR = df['TUMOR'].str.split(":",expand=True)

df_TUMOR.columns=['GT','AD','AF','DP','F1R2','F2R1','PGT','PID','PS','SB']

df_TUMOR['DP'] = df_TUMOR['DP'].astype(int)

df_TUMOR['RD'] = df_TUMOR['AD'].str.split(",").str[0].astype(int)

df_TUMOR['AD'] = df_TUMOR['AD'].str.split(",").str[1].astype(int)

answer['DP_c'] = df_TUMOR['RD']+df_TUMOR['AD']

answer['AF_c'] = df_TUMOR['AD']/answer['DP_c']

df = df.join(answer)

(d) calculate the genotype of each variant locus
allelic_ File is the path of ${SampleID}_icn.seg which is obtained by using the

CN command of sclust software
f = open(allelic_file, 'r')

df2 = pd.read_csv(f, sep='\t', header=0, comment='#')

df2['Start'] = df2['Start'].astype(int)

df2['End'] = df2['End'].astype(int)

for chr,pos in zip(df[['CHROM','POS']]):

 aline = df2[(df2['Start'] < pos) & (df2['End'] > pos) & (df2['Chromosome'] == chr)]

 aline = aline[['Chromosome', 'A', 'B']]

 aline = aline.reset_index()

 if aline.shape[0] == 0:

 major = minor = 1

 else:

 major = aline['A'][0]

 minor = aline['B'][0]

(e) Filter
The genes located in 23 pairs of chromosomes, high reading depth and somatic

variation were retained in the data
CHR = ['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12',

'chr13','chr14','chr15','chr16','chr17','chr18','chr19','chr20','chr21','chr22','chrX','chrY']

df = df[df['CHROM'].isin(CHR)]

df = df[df['FILTER']=='PASS']

message = df[(df['DP_c']>14) & (df['AF_c']>0.1)]

message = message[['CHROM','POS','REF','ALT','DP_n','AF_n','AD_n','DP_c','AF_c','AD_c','major'

,'minor','Sample']]

(f) Output files according to different formats
Sclust:

Sclust input has been processed in Step-1
PyClone and FastClone:
with open(output_dir + sample + '.tsv', 'w') as file_out:

file_out.write(message['Sample'].str+message['CHROM'].str+':'+message['POS'].str + '\t')

file_out.write(message['DP_c'] + '\t')

file_out.write(message['AD_c'] + '\t')
file_out.write(message['major'] + '\t')
file_out.write(message['minor'] + '\t')
file_out.write(message['Sample']+ '\t')
file_out.write(AB + '\t' + '\n')

DPClust:
with open(output_dir + sample + '.tsv', 'w') as file_out:

file_out.write(message['CHROM'].str + '\t')

file_out.write(message['POS'].str + '\t')

file_out.write(message['DP_c'].str + '\t')

file_out.write(message['AD_c'].str + '\t')
file_out.write(int(message['major']+message['minor']) + '\t')

file_out.write(int(message['major']+message['minor']) + '\t')
file_out.write(message['AF_c']+ '\t')

file_out.write(unphased + '\t' + '\n')

phyloWGs:
with open(output_dir + sample + '.tsv', 'w') as file_out:

file_out.write('s'+message['CHROM'].index + '\t')

file_out.write(message['Sample'].str+message['CHROM'].str+':'+message['POS'].str + '\t')

file_out.write(message['DP_n'].str + '\t')

file_out.write(message['DP_c'].str + '\t')
file_out.write(message['AF_n'].str + '\t')

file_out.write(message['AF_c'].str + '\t'+ '\n')

sciClone and CLiP:
with open(output_dir_cnv + sample + '.tsv', 'w') as file_out:

file_out.write(df2['CHROM'].str+ '\t')

file_out.write(df2['Start'].str + '\t')

file_out.write(df2['End'].str + '\t'+ '\n')
file_out.write(int(df2['major']+ df2['minor']) + '\t')

with open(output_dir_snp + sample + '.tsv', 'w') as file_out:

file_out.write(message['CHROM'].str + '\t')

file_out.write(message['POS'].str + '\t')

file_out.write(message['DP_n'].str + '\t')
file_out.write(message['DP_c'].str + '\t')

file_out.write(message['AF_c'].str + '\t'+ '\n')

Svclone
with open(output_dir + sample + '.tsv', 'w') as file_out:

file_out.write(message['CHROM'].str + '\t')

file_out.write(message['POS'].str + '\t')

file_out.write(message['CHROM'].str + '\t')

file_out.write(message['POS'].str + '\t')

TrAp
with open(output_dir + sample + '.html', 'w') as file_out:

file_out.write('SIGNAL' + '\t')

file_out.write(message['Sample'].str+message['CHROM'].str+':'+message['POS'].str + ' ')

file_out.write(message['DP_c'].str + ' '+ '\n')

CloneFinder
with open(output_dir + sample + '.tsv', 'w') as file_out:

file_out.write(message['Sample'].str+message['CHROM'].str+':'+message['POS'].str + '\t')

file_out.write(message['DP_n'].str + '\t')

file_out.write(message['DP_c'].str + '\t'+ '\n')

PhylogicNDT:
with open(output_dir + sample + '.tsv', 'w') as file_out:

file_out.write(message['Sample'].str+message['CHROM'].str+':'+message['POS'].str + '\t')

file_out.write(message['CHROM'].str + '\t')

file_out.write(message['POS'].str + '\t')

file_out.write(message['REF'].str + '\t')

file_out.write(message['ALT'].str + '\t')
file_out.write(message['DP_c'].str + '\t')

file_out.write(message['AD_c'].str + '\t'+ '\n')

4. Subclonal inferencing
Sclust
1 bamprocess

The function of bamprocess is to analyze the reading depth (RD) information,
allele information and GC content and SNP of whole genome sequencing (WGS) data.
This information is stored in two files named ${sampleID}_rcount.txt and
${sampleID}_snps.txt. In particular, each chromosome needs to be processed
separately. Finally, the -i and -o parameters are used to merge all the files to get the
final result.
Sclust bamprocess -t ${sampleID}.WGS.sorted.markdup.bqsr.bam \

-n ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-o ${sampleID} -part 2 -build hg38 -r chr1

Sclust bamprocess -t ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-n ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-o ${sampleID} -part 2 -build hg38 -r chr2

... ...

Sclust bamprocess -t ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-n ${sampleID}.WGS.sorted.markdup.bqsr.bam \
-o ${sampleID} -part 2 -build hg38 -r chrY

Sclust bamprocess -i ${sampleID}. -o ${sampleID}.
2 cn

This step is responsible for calculating copy number variation (CNV), clone copy
number fraction (CCF), ploidy and purity in the WGS data.
Sclust cn -rc ${sampleID}_rcount.txt -snp ${sampleID}_snps.txt \
-vcf ${sclust}.input.vcf -o ${sampleID} --ns 1000

3 cluster
This function is used to cluster the tumor cell fraction (CCF) to find the

corresponding evolution table.
Sclust cluster -I ${sampleID} -lambda ${lambda}

Figure 4 shows some visualization results of sclust software, in which Figure 4 (A)
shows the purity, ploidy and copy number of tumor, and Figure 4 (B) describes the
clustering result information.

Figure 4 (A) The result files obtained by running cn function.

Figure 4 (B) The result files obtained by running cluster function.
Pyclone
1 analysis pipeline

Run the whole process of pyclone to get the phylogenetic tree of tumor cells.
2 setup and run analysis

Pyclone uses the function named setup_analysis to specify the location of the input
sample and the output of the result file, and generates the configuration file in yaml
format.
PyClone setup_analysis --in_files ${sampleID}/*.tsv --working_dir
${sampleID}_out_dir

The function of run_analysis specifies the output location of yaml format
configuration files, and the command will output yaml format files.
PyClone run_analysis --config_file ${sampleID}_out_dir/config.yaml

3 plot clusters
The function named plot_clusters generates the clustered images, outputs them in

PDF format, and specifies the location of the PDF file.
PyClone plot_clusters --config_file ${sampleID}_out_dir/config.yaml \
--plot_file ${sampleID}_out_dir/cluster --plot_type density

4 plot loci
The function of plot_clusters generates the image file of loci and outputs it in PDF

format
PyClone plot_loci --config_file ${sampleID}_out_dir/config.yaml \
--plot_file ${sampleID}_out_dir/cluster --plot_type density

Figure 5 shows part of the results of the plot clusters function, which showed the
relationship between cell prevalence and clustering density.

Figure 5 The visualization result of pyclone
Fastclone
1 run fastclone

fastclone contains three key parameters, load-pyclone, load-pyclone_truth and
load-mutect_battenberg. Using the load-pyclone parameter means that the loaded file
is the same as the input file of pyclone. The load-pyclone_truth parameter represents
that the loaded file is selected from the pyclone input file. load-mutect_battenberg
represents that the loaded file is the file obtained by the MuTect and Battenberg methods.
The specific running code is as follows:
for sample_file in ${sampleID}_dir
do
(fastclone load-pyclone prop ${sample_file} None solve \
${sample_file}_output) >> output_record_update 2>&1
done

5. The formats of all 12 methods

sclust:

Sclust software needs to use SNP results of sequencing data in CN command. The input format of
SNP information is VCF, and the details are as follows:

Column Description

CHROM Chromosome on which the mutation occurred

POS Position at which the mutation occurred

ID Any string identifying the variant -- this need not be a gene name.

REF Base type of reference gene

ALT Base type allele gene

Filter Base quality

INFO Mutation information

PyClone and FastClone:

Pyclone and fastclone have the same input format. The specific format is as follows:

Column Description

mutation_id Any string identifying the variant -- this need not be a gene name.

ref_counts The number of reads overlapping the locus matching the reference allele

var_counts The number of reads overlapping the locus matching the variant allele.

normal_cn
The copy number of the locus in non-malignant cells. This should
generally be 2 except for sex chromosomes in males.

minor_cn
The copy number of the minor allele in the malignant cells. This must be
less than equal the value in the major_cn column.

major_cn
The copy number of the major allele in the malignant cells. This should be
greater than equal to the value in the minor_cn column and greater than 0.

DPClust:

The detailed meaning of each column in the input file is as follows:

Column Description

chr Chromosome on which the mutation occurred

end Position at which the mutation occurred

WT.count The number of sequencing reads supporting the reference allele

mut.count The number of sequencing reads supporting the mutation allele

subclonal.CN The total copy number at the location of the mutation

mutation.copy.number
The raw estimate of the average number of chromosome copies that
carry the mutation

subclonal.fraction
The estimate of the fraction of tumour cells (CCF) that carry the
mutation

no.chrs.bearing.mut The mutation's multiplicity estimate

phyloWGs:

The detailed meaning of each column in the input file is as follows:

Column Description

id
Identifier for each SSM. Identifiers must start at s0 and increment, so the first data
row will have s0, the second row s1, and so forth.

gene Any string identifying the variant -- this need not be a gene name.

a Number of reference-allele reads at the variant locus.

d Total number of reads at the variant locus.

mu_r Fraction of expected reference allele sampling from the reference population

mu_v Fraction of expected reference allele sampling from variant population

sciClone:

Sciclone has two input files that record CNV and SNP information respectively. The file format for
recording CNV information is as follows:

Column Description

chr Chromosome on which the mutation occurred

start Starting position of copy number variation segment

stop Endding position of copy number variation segment

Column Description

segment_mean The absolute copy number of the segment

The file format for recording SNP information is as follows:

Column Description

chr Chromosome on which the mutation occurred

pos The position of SNP

ref_reads Read depth of reference-allele reads at the variant locus.

var_reads Read depth of variant-allele reads at the variant locus.

vaf Variant Allele Frequency

Svclone

Column Description

Chr1 Chromosome in which structural variation occurs

Pos1 Location of structural variation

Chr2 Chromosome in which structural variation occurs

Pos2 Location of structural variation

CLIP

CLiP has three input files that record CNV, SNP and purity information respectively. The file format
for recording CNV information is as follows:

Column Description

chr Chromosome on which the mutation occurred

start the start position of the CNA segment on the corresponding chromosome.

end the end position of the CNA segment on the corresponding chromosome

major_cn
The copy number of the major allele in tumor cells. This should be greater than
equal to the value in the minor_cn column and greater than 0

minor_cn
The copy number of the minor allele. This must be less than equal the value in
the major_cn column.

total_cn The sum of major_cn and minor_cn.

The file format for recording SNP information is as follows:

Column Description

chromosome_index The chromosomal location of the SNV.

Column Description

position
the single-nucleotide position of the SNV on the corresponding
chromosome.

ref_count
The number of reads covering the locus and containing the reference
allele

alt_count
The number of reads covering the locus and containing the alternative
allele

The file format for recording Purity information is as follows:

Column Description

Number Decimal representing tumor purity

TrAp

Column Description

name unique identifier of the genomic aberration

value cellular frequency of the genomic aberration

CloneFinder

Column Description

"XX:ref" Reference read count for the sample, XX

"XX:alt" Variant read count for the sample, XX

PhylogicNDT

Column Description

Hugo_Symbol Gene name

Chromosome The chromosomal location of the Variant

Start_position
the start position of the SNP segment on the corresponding
chromosome.

Reference_Allele Base type of reference gene

Tumor_Seq_Allele2 Base type after mutation

t_ref_count
The number of reads covering the locus and containing the reference
allele

t_alt_count
The number of reads covering the locus and containing the alternative
allele

