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ABSTRACT

Horseshoe bats (genus Rhinolophus, family
Rhinolophidae) represent an important group within
chiropteran phylogeny due to their distinctive ftraits,
including constant high-frequency echolocation, rapid
karyotype evolution, and unique immune system.
Advances in evolutionary biology, supported by high-
quality reference genomes and comprehensive whole-
genome data, have significantly enhanced our
understanding of species origins, speciation mechanisms,
adaptive evolutionary processes, and phenotypic diversity.
However, genomic research and understanding of the
evolutionary patterns of Rhinolophus are severely
constrained by limited data, with only a single published
genome of R. ferrumequinum currently available. In this
study, we constructed a high-quality chromosome-level
reference genome for the intermediate horseshoe bat (R.
affinis). Comparative genomic analyses revealed potential
genetic characteristics associated with virus tolerance in
Rhinolophidae. Notably, we observed expansions in
several immune-related gene families and identified
various genes functionally associated with the SARS-CoV-
2 signaling pathway, DNA repair, and apoptosis, which
displayed signs of rapid evolution. In addition, we observed
an expansion of the major histocompatibility complex class
Il (MHC-II) region and a higher copy number of the HLA-
DQB2 gene in horseshoe bats compared to other
chiropteran  species. Based on  whole-genome
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resequencing and population genomic analyses, we
identified multiple candidate loci (e.g., GLI/3) associated
with variations in echolocation call frequency across R.
affinis subspecies. This research not only expands our
understanding of the genetic characteristics of the
Rhinolophus genus but also establishes a valuable
foundation for future research.
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INTRODUCTION

The genus Rhinolophus, commonly known as horseshoe bats
and representing the sole extant genus in the family
Rhinolophidae, ranks as the second-largest genus within
Chiroptera, comprising 112 species (Simmons & Cirranello,
2024). This genus is distinguished by a suite of unique
characteristics that have contributed to its rapid diversification
(Csorba etal.,, 2019). Among these, Rhinolophus displays
considerable karyotypic diversity, with diploid chromosome
numbers (2n) ranging from 28 to 62 (Mao et al., 2007; Sotero-
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Caio et al., 2017; Zima et al., 1992). The significant variation
in karyotypes suggests that chromosomal fusion and fission
events may have played a critical role in driving the rapid
speciation observed within this group (Augustijnen etal.,
2024; Yoshida etal, 2023). Investigating chromosomal
evolution in species with diverse karyotypes, especially those
with extreme diploid numbers (e.g., R. affinis with 62) (Zima
et al., 1992), could offer valuable insights into the mechanisms
underlying such diversification. Additionally, Rhinolophidae is
one of the three bat families harboring the highest diversity of
viruses, with approximately 80% of known bat viruses
identified within this group (Tian etal., 2022). The ability of
horseshoe bats to host a broad range of viruses, including
being the first species (R. affinis) identified as a reservoir for
SARS-CoV-2 (Zhou et al., 2020), suggests the evolution of
specialized immune systems that enable these bats to tolerate
viral infections. Furthermore, horseshoe bats, along with their
sister family Hipposideridae, are unique among Old World
bats for their ability to produce constant high-frequency
echolocation calls, coupled with Doppler shift compensation
(Li etal.,, 2008; Liu etal.,, 2012; Teeling et al., 2016; Zhang
et al., 2009). This sophisticated echolocation system in the bat
world facilitates precision in prey detection and navigation
(Jones & Teeling, 2006; Schnitzler et al., 2003).

Recent advancements in comparative genomics based on
chromosome-level genome assemblies have provided
significant insights into the molecular basis of adaptive traits in
various mammalian taxa (Jebb et al., 2020; Shao et al., 2023;
Tian et al., 2023). However, genomic data for horseshoe bats
remain limited, with only a single high-quality genome
assembly available for R. ferrumequinum (Jebb et al., 2020).
The primary objective of this study was to construct a high-
quality chromosome-level genome for the intermediate
horseshoe bat (R. affinis) using a combination of lllumina
short-read, Nanopore long-read and Hi-C sequencing
technologies. The inclusion of the R. affinis genome will not
only facilitate a deeper analysis of the origin and evolutionary
history of the Rhinolophidae family but also expand our
understanding of the genetic characteristics of ancestral
horseshoe bats, as well as specific genetic changes that have
occurred during the evolution of this genus.

Rhinolophus affinis, which presents an excellent model for
studying the evolution of echolocation, is widely distributed
across East and Southeast Asia (Simmons & Cirranello,
2024). In China, R. affinis is represented by three subspecies,
including two mainland subspecies (R. a. himalayanus and R.
a. macrurus) and one island subspecies (R. a. hainanus), all
of which diverged from a common ancestor less than 0.8
million years ago (Ma) (Mao & Rossiter, 2020; Mao et al.,
2010). Phylogeographic studies based on mitochondrial and
nuclear markers have revealed that R. a. himalayanus has a
broad distribution range across mainland China, with a hybrid
zone existing between R. a. himalayanus and R. a. macrurus
in eastern regions such as Jiangsu and Anhui (Mao &
Rossiter, 2020; Mao et al., 2010). Despite the absence of
distinguishable morphological characters, these subspecies
exhibit distinct echolocation call frequencies, with R. a.
himalayanus  emitting markedly  higher  frequencies
(87.12+2.04 kHz) compared to R. a. macrurus (73.68+0.74
kHz) and R. a. hainanus (70.851£0.94 kHz) (Mao et al., 2013;
Sun etal., 2013; Xie etal, 2017). This suggests rapid
adaptation and fixation of these phenotypic traits, potentially
driven by population divergence (Kingston & Rossiter, 2004).
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Currently, the genome-wide signals associated with variations
in echolocation call frequency in Rhinolophus are poorly
understood. Rhinolophus affinis can serve as an excellent
model for investigating the molecular mechanisms underlying
echolocation call frequency variation in bats. Further genomic
exploration of the genes associated with these changes holds
significant potential for elucidating the genetic factors driving
the evolution of echolocation, while also providing a deeper
understanding of the functional roles of these genes in
shaping the observed variations in echolocation frequency
among different bat populations.

To determine the genetic mechanisms underlying virus
defense in horseshoe bats and to investigate the genetic
differences in echolocation among the subspecies of R. affinis,
we constructed a chromosome-level genome assembly for R.
affinis and performed whole-genome sequencing of multiple
individuals for comparative genomic and population genomic
analyses. These genomic resources will serve as critical tools
for advancing comparative and population genomics research
in bats, offering insights into the evolutionary processes
shaping these key traits.

MATERIALS AND METHODS

Sample collection

For genome sequencing, a single adult male R. affinis was
captured by mist net in a cave in Yunnan, China
(N25°03'16.7", E103°22'52.5"). Following euthanization by
cervical dislocation, fresh tissue (muscle, heart, brain, liver,
kidney, cochlea, and gut) was promptly flash-frozen in liquid
nitrogen and transferred to a —80°C freezer. For sequencing,
we sampled 21 R. affinis individuals from three subspecies (12
R. a. himalayanus, four R. a. macrurus, five R. a. hainanus,
Figure 1A; Supplementary Table S1) using a dermatological
punch to take 3-mm wing membrane biopsies for each bat.
These tissue samples were stored in 95% ethanol at -20°C
until DNA extraction. Genomic DNA was extracted using
DNeasy kits (Qiagen, Germany) and quantified with a Qubit
2.0 Fluorimeter (Thermo Fisher Scientific, USA). All sampling
and tissue collection procedures were approved by the
National Animal Research Authority at East China Normal
University (approval ID bf20190301).

Genome sequencing

High-quality genomic DNA was extracted from muscle tissue
using a DNeasy Blood and Tissue Kit DNA kit (Qiagen,
Germany). Three sequencing technologies were applied to
generate a high-quality reference genome. First, an lllumina
short-read library with an insert size of 350 bp was
constructed and sequenced using the Illlumina NovaSeq 6000
platform (paired-end 150 bp, USA). Second, a Nanopore long-
read library with >20 kb DNA fragments was created and
sequenced using a Nanopore PromethlON sequencer (UK).
Third, a Hi-C library was generated following previously
established procedures (Belton et al.,, 2012) and sequenced
on the lllumina Hiseq platform (paired-end 150 bp, USA). All
raw lllumina short reads underwent filtering using fastp
v.0.20.1 (Chen etal., 2018), which involved removing
sequencing adapters, unpaired, low-quality, and duplicated
reads.

Genome assembly
The genome size of R. affinis was estimated based on
lllumina-filtered reads using Jellyfish v.2.3.0 (Margais &
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Figure 1 Genomic evolution of Rhinolophus affinis

A: Geographic location of R. affinis samples used for reference genome sequencing (marked by red star) and whole-genome resequencing (marked
by three colored dots). B: Circos plot representing genomic structure comparison of R. affinis and R. ferrumequinum (circles from | to VI represent

karyotype, gene density, GC content, repetitive sequence types (SINE,

LINE, and LTR), and genomic collinearity, respectively). C: Genomic

collinearity comparison of five chromosome-level bat genomes with their genomic arrangements. D: Homologous dot plots showing specific
chromosomal breakages in chromosomes 22 and 25 of R. affinis compared to other relatives.

Kingsford, 2011) by constructing a k-mer count histogram with
19, 21, 23, and 25 mers. Heterozygosity and the rate of
duplication were estimated using GenomeScope Vv.2.0
(Ranallo-Benavidez et al., 2020). The filtered Nanopore reads
were assembled using FLYE v2.8.1-b1676 (Kolmogorov et al.,
2019) with parameters “--nano-raw --iterations 2”. lllumina
short reads were then employed to polish the assembled
contigs using NextPolish v.1.3.1 (Hu et al., 2020) with default
parameters. Duplicated sequences were identified and
removed with PURGE_DUPS v.1.2.,5 (Guan etal.,, 2020).
Juicer v.1.5.7 (Durand et al., 2016b) and 3D-DNA v180922
(Dudchenko etal.,, 2017) were used to construct a
chromosome-level assembly based on Hi-C reads. Juicebox
Assembly Tools v.1.9.9 (Durand et al., 2016a) was applied for
the manual correction of chromosomal structures.

Three methods were used to evaluate genome assembly
quality. First, Benchmarking Universal Single-Copy Orthologs
(BUSCO) v.4.1.2 was employed to assess genome integrity
with the parameters “m genome -l mammalia_odb10”.
Second, synteny analysis was performed between the high-

quality genomes of R. affinis and R. ferrumequinum
(GCA_004115265.2). Third, the mapping rates of the lllumina
short reads and assembled transcriptomes were estimated
using Trinity v.2.13.2 (Grabherr et al., 2011) based on RNA
sequencing (RNA-seq) data from different tissues to the
assembled whole genome of R. affinis.

Repeat annotation

Repetitive sequences were annotated using both de novo and
homology-based predictions. The de novo repeat library was
constructed using RepeatModeler v.1.0.11 (http://www.
repeatmasker.org/RepeatModeler/). All transposable elements
were subsequently identified using RepeatMasker v.4.0.7
(http://repeatmasker.org/) by comparing them against a
combined dataset consisting of the Repbase transposable
element library and the built de novo repeat library. Tandem
repeats and simple sequence repeats (SSRs) were predicted
using TRF v.4.09 (https://tandem.bu.edu/trf/trf.ntml) with
default parameters. To explore the evolution of transposable
elements in bats, the insertion time of each TE group was
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calculated using the formula: Insertion time=K/2r, where K is
the Kimura value and r is the evolutionary rate, acquired
through genome divergence time analysis.

Gene annotation

Three approaches were applied for genome annotation,
including ab initio prediction, RNA-seq-based prediction, and
homology-based prediction. Ab initio prediction was performed
using Augustus v.3.3.1 (Stanke et al., 2006), with human gene
sets used to train Augustus, GlimmerHMM v.3.0.4 (Majoros
et al., 2004), and GeneScan v.1.0 (Aggarwal & Ramaswamy,
2002). For RNA-seg-based prediction, previously published
RNA-seq reads from six different tissues (brain, liver, muscle,
heart, small intestine, and cochlea, Ding et al., 2021) of R.
affinis were aligned to the reference genome using STAR
v.2.7.3 (Dobin etal., 2013). Transcriptomes for each tissue
were then assembled using Trinity v.2.13.2 (Grabherr et al.,
2011), and coding sequences were identified using
TransDecoder v.5.5.0 (Haas etal.,, 2013). Whole protein
sequence data of nine mammalian species were downloaded
from the NCBI dataset, including six bat species (Rhinolophus
ferrumequinum,  Rousettus  aegyptiacus,  Phyllostomus
discolor, Myotis myotis, Pipistrellus kuhlii, and Molossus
molossus) and three non-bat species (Felis catus, Bos taurus,
and Homo sapiens) (Supplementary Table S2). Homology-
based gene prediction for R. affinis was performed using the
GeMoMa pipeline v.1.6.1 (Keilwagen etal., 2016) with the
protein data downloaded for the nine selected mammals as
input queries. Finally, EVidenceModeler v.1.1.1 (Haas et al.,
2008) was used to combine the results of all predictions based
on weighted consensus. For functional annotation, all
annotated coding genes of R. affinis were searched against
the SwissProt and Nr databases using diamond v.2.0.8.146
(e-value, 1e-3). Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotations were performed
using eggNOG-Mapper v.1.0 (Cantalapiedra et al., 2021).

Phylogenomic analysis

OrthoFinder v.2.4.0 (Emms & Kelly, 2015) with default
parameters was used to identify one-to-one orthologs across
R. affinis, seven additional bat species (R. ferrumequinum,
Hipposideros armiger, Rousettus aegyptiacus, Phyllostomus
discolor, Myotis myotis, Pipistrellus kuhlii, and Molossus
molossus), and two outgroup species (Felis catus and Bos
taurus) (Supplementary Table S2). The protein sequences of
all orthologous genes were then aligned using prank
v.170427, with the alignments further trimmed using trimAl
v.1.4.rev22 (Capella-Gutiérrez et al., 2009). A phylogenetic
tree was constructed using RAxML v.8.2.12 (Stamatakis,
2014) based on the concatenated protein alignments with the
PROTGAMMAJTT protein substitution model, and bootstrap
tests were estimated with 100 replicates. Divergence time
estimates for the bats and outgroups were inferred using the
“r8s” v.1.81 program (Sanderson, 2003). Time constraints
(38-56 Ma for the split of Hipposideridae and Rhinolophidae,
38-56 Ma for the common ancestor of Molossidae,
Vespertilionidae, and Miniopteridae; 47.8-61.6 Ma of the
deepest divergence of Yangochiroptera, and 47.8-66 Ma for
the earliest bat ancestor) were used for calibration, as
suggested in previous research (Foley et al., 2016).

Gene family expansion and contraction and positive
selection tests
CAFE v.4.0 (https://github.com/hahnlab/CAFE) was used to
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analyze gene family expansion and contraction across seven
bat species with the parameters “lambda -s -t (De Bie et al.,
2006). Gene families with an estimated P-value lower than
0.05 were considered significantly expanded or contracted.
The single-copy orthologous genes for the examined taxa
were used to calculate the ratio of nonsynonymous
substitutions per nonsynonymous site to synonymous
substitutions per synonymous site (Ka/Ks) using the PAML
package v.4.9 (Yang, 2007). The branch-site model was
applied to evaluate the signatures of positive selection acting
on each gene in the foreground branches (R. affinis branch
and ancestor of R. affinisIR. ferrumequinum branch,
respectively). Significantly positively selected genes (PSGs)
were determined using the Chi-Squared test, with “<0.01”
indicating very significant and “>0.01 and <0.05” indicating
significant. Functional and pathway enrichment analyses of
the selected genes were performed using Metascape
v.3.5.20230501 (http://metascape.org/), including the GO,
KEGG, and WikiPathways databases.

Genomic collinearity analysis

To analyze the variation in genomic structures between the
chromosome-level genome assemblies of two Rhinolophus
species (R. affinis and R. ferrumequinum) and other bat
species, two approaches were applied for genomic collinearity
comparison. The first approach involved cross-gene protein
sequence blasting between bat species pairs using BLATSP
v.2.10.1+ (e-value: 1e-10). The second approach identified
whole-genome synteny blocks across the compared bat
genomes using ColinearScan v.1.0.1 (Wang et al., 2006). The
results of these analyses were summarized and visualized in
dot plots using in-house developed PERL scripts.

Whole-genome resequencing and single nucleotide
polymorphism (SNP) calling

The whole-genome DNA sequencing library (insert size 300
bp) was built and sequenced using an lllumina HiSeq 4000
sequencer (150 bp paired-end, USA). For each R. affinis
sample, we generated approximately 30 Gb of resequencing
data (about 15x genome coverage) (Supplementary Table
S1). Raw resequencing data were trimmed using Fastp with
default parameters. For each sample, the trimmed short reads
were mapped to the reference genome of R. affinis using
BWA v.0.7.17-r1188 (Li & Durbin, 2010) and SAMtools v.1.8
(Li etal.,, 2009). Polymerase chain reaction (PCR)-induced
duplicate reads were removed with PICARD v.1.56
(http://broadinstitute.github.io/picard/). During SNP calling, the
mapped reads were locally realigned using IndelRealigner in
the Genome Analysis Toolkit (GATK v.3.8) (McKenna et al.,
2010). The HaplotypeCaller function in GATK was used for
SNP and INDEL discovery and genotyping. Identified
population variants were filtered based on specific criteria:
SNP with “DP<161; DP>1453; QD<2.0; FS>60.0; MQ<40.0;
MQRankSum<-12.5; ReadPosRankSum<-8.0; SOR>3.0".
SNPs in repeated regions were also removed. A total of
50 626 625 SNPs were retained for all R. affinis individuals.
Relatedness among individuals was determined using KING
v.2.3.0  (https://www.kingrelatedness.com).  Furthermore,
PLINK v.1.9 (Purcell et al., 2007) was used to remove SNPs
with possible linkage disequilibrium, resulting in 5 188 130
unlinked SNPs for all involved R. affinis individuals.

Population clustering
Phylogenetic analysis was performed based on all SNP data
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using MEGA v.11 (Tamura etal., 2021), with the neighbor-
joining (NJ) tree constructed with 1 000 bootstraps. The IQtree
v.1.6.12 program (Nguyen et al., 2015) was used to build the
maximum-likelihood (ML) tree with the parameters “igtree -s
ZJ.phy -m MFP -redo -bb 1000 -nt 32”. Principal component
analysis was performed to cluster all R. affinis individuals
using the smartpca program within the EIGENSTRAT v.2.0
package (Patterson et al., 2006). Genome-wide admixture of
R. affinis populations was quantified using ADMIXTURE
v.1.3.0 (http://dalexander.github.io/admixture/) for each
possible group number (K from 1 to 4).

Dynamic changes in demographic history of R. affinis
populations

The pairwise sequentially Markovian coalescent (PSMC)
method (Li & Durbin, 2011) was employed to estimate the
historical fluctuations in effective population size (N,) across
the three R. affinis subspecies. One individual with the highest
sequencing depth from each subspecies population was
selected to ensure the quality of the consensus sequence. For
the PSMC analysis, parameters were set to -N25, t15, -r5, -p
“4+25%2+4+6”, with 100 bootstrap replicates. Furthermore,
MSMC2 v2.1.1 (https://github.com/stschifffmsmc2) was
applied to infer population history using four haplotypes per
subspecies, with the key model set to “1%x2+25x1+1x2”, Prior
to these analysis, the nucleotide mutation rate (u) for R. affinis
was calculated using the equation: y=Dxg/2T, where D is the
observed sequence difference between R. affinis and R.
ferrumequinum estimated by mummer4 v.4.0.0rc1 (Kurtz
etal., 2004), T is the divergence time of these two species
(17.52 Ma), and g is the generation time (2.5 years per
generation) (Kumar et al., 2022). The estimated mutation rate
for R. affinis was 4.62e-9 mutations per site per generation
(Zhao et al., 2021).

Estimation  of
disequilibrium
Genome-wide heterozygosity of the R. affinis populations was
calculated as the proportion of identified heterozygous sites in
the R. affinis genome using PLINK v.1.9. Nucleotide diversity
was calculated using VCFtools v.0.1.16 with the parameters: -
-window-pi 50000 --window-pi-step 20000 --maf 0.05 --max-
missing 0.90 (Danecek etal., 2011). Linkage disequilibrium
patterns of the R. affinis populations were evaluated using
PopLDdecay v.3.41 (Zhang etal., 2019). This approach
involved a genome-wide scan of selection signals using the
genetic differentiation index Fst and nucleotide diversity T
(Feng et al., 2023; Zhang et al., 2022).

genomic diversity and linkage

Identification of PSGs in R. affinis populations

To investigate potential genetic divergence in candidate
hearing genes associated with phenotypical variations in
echolocation call frequency, the genetic divergence index

Table 1 Global statistics for Rhinolophus affinis genome assembly

(Fst) and nucleotide diversity (11) were applied to compare R.
a. himalayanus and the other two subspecies. Given the
similar echolocation call frequencies and close genetic
backgrounds of R. a. macrurus and R. a. hainanus, as well as
their recent divergence and lack of distinction in admixture
analysis, these two populations were combined into a single
group for comparison with R. a. himalayanus. Sliding windows
(50 kb window size and 20 kb step) were used to calculate
genome-wide Fg1 and 1 ratio values using VCFtools v.0.1.16.
Z-transformation was applied to the Fgt values to obtain ZFgt
values, and the 1 ratio was log transformed (log,). The top 5%
of windows with the highest ZFgt and maximum In(1T ratio)
values were identified as candidate outliers under selection in
the R. a. himalayanus population. Conversely, the bottom 5%
of windows with the lowest ZFg7r and In(1T ratio) values were
identified as candidate selection outliers in the R. a.
macrurus/R. a. hainanus group. It is important to note that
genetic drift can also potentially influence unique genomic
features or regions (Funk et al., 2016). However, given the
relatively large N, for each R. affinis subspecies, the impact of
genetic drift is likely to be minimal in this context.

Functional enrichment analysis

Functional enrichment analysis was performed using
Metascape v.3.5.20230501 (http://metascape.org/). Significant
GO terms and KEGG pathways were determined with a
corrected P-value (Q-value<0.05) using Benjamini-Hochberg
multiple test correction. Redundant terms or pathways were
reduced using the REVIGO clustering algorithm v.1.8.1
(http://revigo.irb.hr/) with default settings.

RESULTS

Genome assembly

A high-quality chromosome-level reference genome of R.
affinis was assembled using lllumina short reads (~60 Gb),
Nanopore long reads (~167 Gb), and Hi-C reads (~145 Gb) for
chromosomal anchoring. The initial assembly resulted in 616
contigs (N50>30 Mb) with a genome size of 2.02 Gb.
Remarkably, 99.97% of the contigs were successfully
anchored to 32 chromosomes (30 autosomes, X and Y
chromosomes) (Table 1; Supplementary Figure S1 and Table
S3), consistent with the reported karyotype of R. affinis (Mao
et al., 2007). The re-mapping rates of the lllumina short reads
and RNA-seq data to the assembled R. affinis genome were
99.27% and 98.19%, respectively. The completeness of the
assembled genome was 93.2% based on BUSCO analysis. A
total of 21 168 protein-coding genes were annotated, 20 939
(98.92%) of which were also functionally annotated in the GO
and KEGG databases (Supplementary Table S4).
Comparative genomic analysis between R. affinis and R.
ferrumequinum revealed highly conserved collinearity in their

Type G1 (Contig level) G2 (Contig level) G3 (Contig level) Hi-C (Chromosome level)
Number of contigs/scaffolds 1166 1166 616 32

Contig/scaffold N50 (bp) 30381862 30560113 30201243 92909 886
Contig/scaffold N9O (bp) 4454 582 4480 356 4876479 38872647

Longest contig/scaffold (bp) 81976 908 82468273 82468 273 107 778 528

Average contig/scaffold length (bp) 1771639 1782631 3287950 63275039

Total genome length (bp) 2065732003 2078548679 2025377528 2024801 270*

": Unanchored contig base count is not included.
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genomes (Figure 1B).

Evolution of repetitive elements in Chiroptera

A total of 573.78 Mb of repetitive elements were identified in
R. affinis genome, comprising various types of transposable
elements, including DNA (15.36%), LINE (41.88%), LTR
(18.67%), SINE (15.53%), and others (8.56%) (Supplementary
Table S5). Analysis of historical transposable element
insertions revealed that, following the divergence from
Pteropodidae, the ancestor of Rhinolophoidea experienced a
specific expansion of DNA elements, including TCMAR-
MARINER, TCMAR-TC1, and TCMAR-TC2 (Supplementary
Figure S2). Notably, a distinct expansion of the ACADEM-1
DNA element was observed in R. affinis (Supplementary
Figures S2, S3). In contrast to other Yinchiroptera species, the
common insertion of ZISUPTON and PIGGYBAC elements
was not detected in R. affinis (Supplementary Figures S2, S3).
Furthermore, although R. affinis and R. ferrumequinum shared
similar genome sizes and comparable composition and total
amounts of repetitive elements, differences were noted in the
insertion timing and rate of these elements between the two
species (Supplementary Figure S2).

Genomic collinearity analysis among different bat species
A genome collinearity comparison was conducted between the
R. affinis genome and four other high-quality chromosome-
level bat genomes (R. ferrumequinum, R. aegyptiacus, P.
discolor, and P. pipistrellus, accessed October 2020). The
results revealed multiple chromosomal rearrangement events,
including fissions, fusions, and translocations, among the five
bat genomes (Figure 1C). Compared with the R. affinis
genome, 44, 56, 66, and 84 collinear gene blocks were
identified in the genomes of R. ferrumequinum, R.
aegyptiacus, P. discolor and P. pipistrellus, respectively
(Supplementary Figures S4-S6). These findings suggest a
correlation between genomic structures and phylogenetic
distance.

The collinearity comparison results indicated that
chromosome 22 of R. ferrumequinum was homologous to
chromosomes 22 and 25 of R. affinis. Further syntenic
comparisons among different bats suggested a conserved
chromosomal structure in R. ferrumequinum chromosome 14,
with chromosomal fission events likely occurring later to form
chromosomes 22 and 25 in R. affinis (Figure 1D). Notably, two
endogenous retrovirus genes, RVK-6 and HERVK_113, were
detected near the breakage point of R. ferrumequinum
chromosome 14, which have been previously implicated in
mediating chromosomal rearrangements (Hughes & Coffin,
2001; Weckselblatt & Rudd, 2015).

Rapid evolution of immune-related
Rhinolophidae
Using OrthoFinder, 18 607 homologous gene families and
11 329 single-copy homologous genes were identified across
all bat species studied and the two outgroups (Supplementary
Tables S6, S7). A concatenated data matrix of single-copy
homologous genes was applied to reconstruct the ML tree
(Supplementary Figure S7), yielding topologies consistent with
previously published findings (Stoffberg etal., 2010).
Divergence time estimation indicated approximately 16.18 Ma
between the divergence of R. affinis and R. ferrumequinum,
and 38 Ma between Rhinolophidae and Hipposideridae
(Figure 2A).

Further analysis identified 196 gene families, comprising

genes in
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676 genes that expanded during the evolution of R. affinis
following its divergence from R. ferrumequinum. Functional
enrichment analysis revealed that these expanded genes
were significantly associated with multiple immune-related
functions, including viral genome integration into host DNA
(G0:0044826), viral translational readthrough (GO:0039705),
DNA integration (GO:0015074), and positive regulation of
double-strand break repair via nonhomologous end joining
(G0O:2001034) (Figure 2A, B; Supplementary Table S8). For
the ancestral Rhinolophidae branch, 49 expanded gene
families were identified, showing functional enrichment
associated with sensory perception of chemical stimulus
(G0O:0007606) and regulation of endoribonuclease activity
(G0O:0060699) (Supplementary Table S9).

Further comparison of multiple genomes highlighted that
Rhinolophidae species (R. affinis and R. ferrumequinum)
possessed the longest major histocompatibility complex
(MHC) regions (1.81 Mb in R. affinis and 1.53 Mb in R.
ferrumequinum), and the highest number of genes (27,
including 14 MHC-Il genes) (Supplementary Table S10;
Figure 2C) compared to other bat species. These results
suggest an expansion of MHC genes in the common ancestor
of the Rhinolophidae lineage. In addition, compared to other
bats, Rhinolophidae species contained more gene copies of
HLA-DQB2 (three and one (or none) in Rhinolophidae and
other bats, respectively), a gene specifically expressed in
human epidermal Langerhans cells (Lenormand et al., 2012)
and associated with systemic lupus erythematosus (Barcellos
etal., 2009), rheumatoid arthritis (Kochi etal., 2004), and
hepatitis B (Chang et al., 2014; Xu et al., 2017).

The synonymous and nonsynonymous substitution rates of
the 11 329 identified single-copy homologous genes were
calculated to test the signatures of natural selection on
different Rhinolophoidea branches. In total, 504 significant
PSGs were identified on the R. affinis branch after its
divergence from R. ferrumequinum (Supplementary Table
S11). Functional analysis indicated that these PSGs were
significantly enriched in sensory organ development (GO:
0007423), inflammatory response (GO:0006954), and various
immune-related items, such as regulation of humoral immune
response  (GO:0002920), immune effector  process
(G0O:0002252), and complement system (WP2806)
(Figure 2D; Supplementary Figure S8 and Tables S12-S14).
Similarly, the 649 PSGs detected on the ancestral branch of
Rhinolophidae (Figure 2b; Supplementary Table S15) were
associated with inflammatory response (GO:0006954),
defense response to virus (GO:0051607), and other immune-
related functions (Supplementary Tables S16-S18). Many
identified PSGs of Rhinolophidae (e.g., CASP8 and BCL2L14)
were functionally related to apoptosis, an important
mechanism of virus removal (Benedict et al., 2002). Notably,
several PSGs were involved in the SARS-CoV-2 signaling
pathway, including C1S, CASP8, and CD2, and the well-
reported ACE2 gene (Figure 2E; Supplementary Figure S9).
Collectively, these findings suggest that the expanded gene
families and PSGs in the evolution of the Rhinolophidae clade
exhibit significant functional enrichment related to immune
processes.

In addition, multiple DNA repair-related genes, such as
PRKDC and ATM, were found to be under positive selection
on the ancestral branch of Rhinolophidae. These genes play
crucial roles in non-homologous end joining (NHEJ) and
homologous recombination (HR), which contribute to
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mainly located in the FAT and PI3K/PI4K catalytic domains on the ATM gene.
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chromosomal rearrangements. Specifically, the PRKDC gene
functions in DNA double-strand break repair and
recombination (Lees-Miller & Meek, 2003), while ATM
encodes an essential cell cycle checkpoint kinase whose
phosphorylation is involved in the cell's response to DNA
damage and genome stability (Bartek et al., 2007; Traven &
Heierhorst, 2005) (Figure 2F, G).

Population diversities among three R. affinis subspecies
The ML and NJ trees were constructed using concatenated
population genomic SNP data from the three R. affinis
subspecies. The phylogenetic analyses supported an initial
split of R. a. himalayanus, followed by the divergence of R. a.
macrurus and R. a. hainanus (Figures 1A, 3A; Supplementary
Figure S10). This clustering pattern was further corroborated
by principal component analysis (PCA) (Figure 3B;
Supplementary Figure S11). However, admixture analysis with
two clusters (K=2) indicated that R. a. himalayanus and the
mixed group of R. a. macrurus and R. a. hainanus best fit the
data (Figure 3A; Supplementary Figure S12). These results
are consistent with our recent study based on sequence
capture data (Mao & Rossiter, 2020).

The PSMC and multiple sequentially Markovian coalescent
(MSMC) methods were applied to infer historical changes in
N, for the three R. affinis subspecies. Results revealed that
the three subspecies shared a common ancestor 0.9 to 8 Ma
(Figure 3C). The inferred split between R. a. himalayanus and
the common ancestor of R. a. macrurus and R. a. hainanus
was estimated to have occurred around 0.7-0.9 Ma
(Figure 3D), coinciding with the period between the
Xixiabangma  glaciation (XG, 1.17-0.80 Ma) and
Naynayxungla glaciation (NG, 0.78-0.50 Ma). After a brief
population decline during the penultimate glaciation (PG), R.
a. himalayanus underwent a rapid population expansion
(Figure 3C). The divergence time between R. a. macrurus and
R. a. hainanus occurred approximately 0.3 Ma (Figure 3D),
coinciding with the emergence of the land bridge between
Hainan Island and the mainland (0.3-0.13 Ma) during the
Pleistocene, suggesting that this land bridge may have
facilitated population migration and the subsequent formation
of the insular endemic subspecies R. a. hainanus. Notably, R.
a. hainanus exhibited a distinct population history marked by a
sharp decline following its divergence from mainland
populations. In addition to the lower genomic heterozygosity,
reduced nucleotide diversity (Figure 3E), and slower linkage
disequilibrium (LD) decay rate (Figure 3F), these results
suggest that a genetic bottleneck occurred in this insular
endemic subspecies after migration and subsequent isolation
due to the disappearance of the land bridge.

Characterization of PSGs among three R. affinis
subspecies

A positive selection pipeline was applied to scan for significant
genetic variations among R. affinis populations (details in
Materials and Methods). This analysis identified 707 highly
diverged genes in the high call frequency taxon (R. a.
himalayanus) and 197 in the low call frequency taxa (R. a.
macrurus and R. a. hainanus) (Figure 4A; Supplementary
Tables S19, S20). Functional enrichment analysis of these
genes showed a significant association with GO terms related
to the renewal of cochlear hair cells and/or repair of hair cell
damage, including regulation of mitotic cell cycle process,
DNA damage response and DNA repair, and regulation of

actin-based cytoskeleton organization (Supplementary Tables

1154 www.zoores.ac.cn

S21, S22).

To explore potential genotypic variations linked to the
phenotypic differences in call frequencies, the identified PSGs
were compared with known hearing-related genes associated
with hearing loss and/or deafness in humans or mice (297
listed hearing loss/deafness-related genes from
https://hereditaryhearingloss.org/ and He etal. (2021),
Supplementary Table S23). The comparison identified nine
highly diverged genes (GLI3, PCDH15, TECTA, WNT3A,
EPS8L2, MPZL2, BIRC5, ACTG1, and NLRP3) functionally
associated with hearing loss or deafness. Within these genes,
GLI3 exhibited the highest Fgt and T values (Figure 4B).
Genotyping results suggested two distinct genotypes between
R. a. himalayanus and the other two subspecies (Figure 4B).
The GLI3 gene, previously suggested to play a critical role in
determining otocyst ventral polarity during inner ear
development via the Sonic hedgehog (SHH) pathway (Ohta
etal., 2016), contained 14 exons and was located on
chromosome 17 in R. affinis. In this gene region, a total of
3 030 SNPs were identified, with 1 102 SNPs fixed in either R.
a. himalayanus or the R. a. macrurus/R. a. hainanus group.
Among these fixed SNPs, four were synonymous and one was
nonsynonymous (Figure 4C; Supplementary Table S24). The
nonsynonymous SNP results in an amino acid substitution
from glutamate to lysine at the 776th amino acid site. Protein
structure and functional predictions suggested that this
substitution may severely disrupt the protein’'s three-
dimensional structure, likely leading to significant functional
changes (Figure 4D). The other eight hearing-related genes
identified under selection in R. affinis populations also showed
functional associations with hair cell damage (PCDH15,
Wagner & Shin, 2019; TECTA, Hildebrand etal., 2011;
EPS8L2, Furness etal., 2013), protection of the inner ear
against stress-induced cell damage (BIRC5, Habtemichael
etal.,, 2010; WNT3A, Cui etal., 2023), actin-based hair cell
cytoskeleton (ACTG1, Morin et al., 2009), structural integrity
of the organ of Corti (MPZL2, Wesdorp etal.,, 2018), and
reactive oxygen species (ROS)-, noise-, and aging-related
hearing loss (NLRP3, Sai et al., 2022).

DISCUSSION

High-quality reference genomes play a crucial role in both
comparative and population genomics. In this study, we
constructed a chromosome-level genome assembly for R.
affinis and performed comparative genomic analyses with
seven other high-quality bat genomes.

Cytogenetic research on the Rhinolophus genus has
previously suggested an ancestral karyotype of 2n=58, a
pattern that closely resembles the current karyotype of R.
ferrumequinum (Mao et al., 2007). Consistent with this, our
whole-genome alignments across various bat species and
other mammals supported the ancestral chromosomal
structure of R. ferrumequinum chromosome 14 (Figure 1D). In
addition, our findings supported chromosomal fissions and
fusions as the main drivers of karyotypic evolution in
Rhinolophus, analogous to the evolutionary processes
observed in Erebia butterflies (Augustijnen etal., 2024).
However, to fully elucidate the molecular mechanisms
underlying chromosomal evolution in Rhinolophus, future
studies will require chromosome-level genome assemblies
from additional horseshoe bat species with lower chromosome
numbers (e.g. 2n=28, 32, and 36).

Bats are well-established hosts of a wide array of viruses,
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Figure 3 Population genetic analyses of three subspecies of Rhinolophus affinis

A: Maximume-likelihood phylogenetic tree of involved taxon based on data of 71 million autosomal SNPs. Scores near each node in the tree indicate
bootstrap support values. ADMIXTURE results with K=2 to 3 are shown. B: PCA results of R. affinis populations based on autosomal SNPs. C:
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relative cross-coalescence rates between pairs of subspecies given by MSMC results. E: Comparisons of genome-wide heterozygosity and

nucleotide diversity. F: LD of three R. affinis subspecies.

including coronaviruses, rhabdoviruses, paramyxoviruses, and
filoviruses (Tian et al., 2022). These viruses have the capacity
to undergo cross-species transmission, posing significant
pathogenic risks to other mammals, including humans,
through direct contact or via intermediate hosts (Cui etal.,
2019; Tian et al., 2022). Comparative genomic studies have
provided insights into the genomic basis of virus tolerance in
the ancestral Chiroptera lineage (Jebb et al., 2020; Moreno
Santillan etal., 2021; Scheben etal., 2023; Zhang etal,
2013), revealing unique immune system adaptations in bats,
such as loss of the PHYIN gene family (Ahn etal., 2016;

Zhang etal., 2013), expansion and contraction of type |
interferon (IFN) cytokines (Pavlovich, 2018; Zhou et al., 2016),
and expansion of Tetherin (Hayward etal., 2022), PKR
(Jacquet et al., 2022), and TNFRSF14 (Schneor et al., 2023).
Given that a significant proportion of identified viruses (~80%)
are hosted by species within the Vespertilionidae,
Rhinolophidae and Pteropodidae families, research focusing
on these specific clades may provide novel insights into the
evolution and adaptive divergence of virus tolerance (Tian
et al., 2022, 2023).

Comparative genomic analyses revealed that gene families
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expanded in Rhinolophidae, as well as PSGs, were enriched
in immune-related functional categories, consistent with
previous studies (Jebb et al., 2020; Moreno Santillan et al.,
2021; Scheben et al., 2023; Zhang et al., 2013). Notably, we
identified an expansion of MHC-II genes and HLA-DQB2 in
Rhinolophidae, distinguishing them from other bats and
mammals. While MHC-1 gene expansions have been
documented in various bats, including those from
Pteropodidae (Pavlovich, 2018), Noctilionidae, Mormoopidae,
and Phyllostomidae (Moreno Santillan etal.,, 2021), the
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specific expansion of MHC-Il genes and HLA-DQB2 in
Rhinolophidae suggests a unique evolutionary adaptation to
increased viral exposure. MHC-II molecules play a crucial role
in initiating antigen-specific immune responses (Holling et al.,
2004), and their expansion in Rhinolophidae may be
associated with their role as primary hosts for coronaviruses,
especially SARS-related coronaviruses (Ruiz-Aravena et al.,
2022; Yan et al., 2021). Consistent with this, multiple PSGs in
the Rhinolophidae clade were found to be involved in the
SARS-CoV-2 signaling pathway, emphasizing their potential
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role in antiviral defense and providing support for the
hypothesis that horseshoe bats may be a natural reservoir for
SARS-CoV and SARS-CoV-2 (Ge etal., 2013; Temmam
et al., 2022).

The high-quality chromosome-level reference genome of R.
affinis enabled a comprehensive genome-wide scan for
selection signals across the three R. affinis subspecies,
presenting stable divergence in echolocation call frequencies.
Consistent with previous studies (Mao et al., 2010, 2013; Mao
& Rossiter, 2020), our analysis of whole-genome data from 21
individuals confirmed a closer relationship between R. a.
macrurus and R. a. hainanus compared to R. a. himalayanus
(Figure 3). These subspecies, which diverged relatively
recently (0.7-0.9 Ma, Figure 3) and display distinct
echolocation call frequencies, present a promising model for
identifying candidate loci associated with this phenotypic
variation. Positive selection analysis indicated that genes
under positive selection in R. a. himalayanus populations,
which utilize the highest echolocation call frequency, were
primarily associated with adaptations to echolocation signal
variation, including processes related to the renewal of
cochlear hair cells (i.e., mitotic cell cycle process), repair of
hair cell damage, and energy production. This finding aligns
with the environmental differences between R. a. himalayanus
and the other two subspecies, with the former relying on more
intense echolocation calls and inhabiting noisier environments
(Jakobsen et al., 2013). These results support the hypothesis
that echolocation call divergence in bats is primarily driven by
differential selection pressures in response to environmental
adaptations (Jones & Holderied, 2007). Furthermore, given
the importance of echolocation pulses in communication
(Jones & Siemers, 2011), divergence in call frequency within
R. affinis may lead to assortative mating, ultimately
contributing to reproductive isolation and speciation,
consistent with previous studies in horseshoe bats (Kingston &
Rossiter, 2004). Acoustic divergence as a driver of speciation
has been documented in numerous animals, including insects,
frogs, birds, and mammals (reviewed in Wilkins et al., 2013).
The multiple PSGs identified in this study, including nine
known hearing/deafness-related genes, can be regarded as
candidate ‘speciation genes’ (Nosil & Schluter, 2011) that
encode a ‘magic trait’ (echolocation) involved in mating cues
(Servedio et al., 2011). However, further studies incorporating
whole-genome sequencing of additional individuals, as well as
other methods, such as genome-wide association analysis,
will be required to validate our current results.

In  conclusion, this research has expanded our
understanding of the genetic characteristics of horseshoe
bats. Future studies with more high-quality genomic data from
the Rhinolophidae family will be critical for delving deeper into
the genetics of these bats and exploring potential links
between their genetic traits and ecological or behavioral
adaptations.
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