Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Wei-Jian Guo, Yi Wu, Kai He, Yi-Bo Hu, Xiao-Yun Wang, Wen-Hua Yu. Unraveling the macroevolution of horseshoe bats (Chiroptera: Rhinolophidae: Rhinolophus). Zoological Research, 2023, 44(1): 169-182. doi: 10.24272/j.issn.2095-8137.2022.265
Citation: Wei-Jian Guo, Yi Wu, Kai He, Yi-Bo Hu, Xiao-Yun Wang, Wen-Hua Yu. Unraveling the macroevolution of horseshoe bats (Chiroptera: Rhinolophidae: Rhinolophus). Zoological Research, 2023, 44(1): 169-182. doi: 10.24272/j.issn.2095-8137.2022.265

Unraveling the macroevolution of horseshoe bats (Chiroptera: Rhinolophidae: Rhinolophus)

doi: 10.24272/j.issn.2095-8137.2022.265
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
W.H.Y. and Y.W. designed the study. W.J.G., X.Y.W., W.Y., K.H., Y.B.H., and W.H.Y. performed the data analyses. W.H.Y., X.Y.W., and W.J.G. wrote the manuscript. X.Y.W., W.H.Y., and W.J.G. revised the manuscript. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This study was supported by the National Natural Science Foundation of China (31970394, 32192421, 31300314) and Special Foundation for National Science and Technology Basic Research Program of China (2021FY100303)
More Information
  • Unraveling the diversification mechanisms of organisms is a fundamental and important macroevolutionary question regarding the diversity, ecological niche, and morphological divergence of life. However, many studies have only explored diversification mechanisms via isolated factors. Here, based on comparative phylogenetic analysis, we performed a macroevolutionary examination of horseshoe bats (Chiroptera: Rhinolophidae: Rhinolophus), to reveal the inter-relationships among diversification, intrinsic/extrinsic factors, and climatic ecological niche characteristics. Results showed a general slowing trajectory during diversification, with two dispersal events from Asia into Southeast Asia and Africa playing key roles in shaping regional heterogeneous diversity. Morphospace expansions of the investigated traits (e.g., body size, echolocation, and climate niche) revealed a decoupled pattern between diversification trajectory and trait divergence, suggesting that other factors (e.g., biotic interactions) potentially played a key role in recent diversification. Based on ancestral traits and pathway analyses, most Rhinolophus lineages belonging to the same region overlapped with each other geographically and were positively associated with the diversification rate, implying a competitive prelude to speciation. Overall, our study showed that multiple approaches need to be integrated to address diversification history. Rather than a single factor, the joint effects of multiple factors (biogeography, environmental drivers, and competition) are responsible for the current diversity patterns in horseshoe bats, and a corresponding multifaceted strategy is recommended to study these patterns in the future.
  • Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    W.H.Y. and Y.W. designed the study. W.J.G., X.Y.W., W.Y., K.H., Y.B.H., and W.H.Y. performed the data analyses. W.H.Y., X.Y.W., and W.J.G. wrote the manuscript. X.Y.W., W.H.Y., and W.J.G. revised the manuscript. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, et al. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 106(32): 13410−13414. doi: 10.1073/pnas.0811087106
    [2]
    Álvarez-Carretero S, Tamuri AU, Battini M, Nascimento FF, Carlisle E, Asher RJ, et al. 2022. A species-level timeline of mammal evolution integrating phylogenomic data. Nature, 602(7896): 263−267. doi: 10.1038/s41586-021-04341-1
    [3]
    Barnosky AD. 2001. Distinguishing the effects of the Red queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology, 21(1): 172−185. doi: 10.1671/0272-4634(2001)021[0172:DTEOTR]2.0.CO;2
    [4]
    Benton MJ. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science, 323(5915): 728−732. doi: 10.1126/science.1157719
    [5]
    Brown WL, Wilson EO. 1956. Character displacement. Systematic Zoology, 5(2): 49−64. doi: 10.2307/2411924
    [6]
    Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist, 164(6): 683−695. doi: 10.1086/426002
    [7]
    Clayton JW, Soltis PS, Soltis DE. 2009. Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical Angiosperm family (Simaroubaceae, Sapindales). Systematic Biology, 58(4): 395−410. doi: 10.1093/sysbio/syp041
    [8]
    Condamine FL, Rolland J, Höhna S, Sperling FAH, Sanmartín I. 2018. Testing the role of the Red Queen and Court Jester as drivers of the macroevolution of Apollo butterflies. Systematic Biology, 67(6): 940−964. doi: 10.1093/sysbio/syy009
    [9]
    Csorba G, Ujhelyi P, Thomas N. 2003. Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Shropshire: Pelagic Publishing Press.
    [10]
    Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, et al. 2011. Geneious v5.4. http://www.geneious.com.
    [11]
    Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5): e88. doi: 10.1371/journal.pbio.0040088
    [12]
    Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1792−1797. doi: 10.1093/nar/gkh340
    [13]
    Eick GN, Jacobs DS, Matthee CA. 2005. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution, 22(9): 1869−1886. doi: 10.1093/molbev/msi180
    [14]
    Eiting TP, Gunnell GF. 2009. Global completeness of the bat fossil record. Journal of Mammalian Evolution, 16(3): 151−173. doi: 10.1007/s10914-009-9118-x
    [15]
    ESRI. 2011. ArcGIS desktop: release 10. Redlands: Environmental Systems Research Institute.
    [16]
    Etienne RS, Haegeman B. 2012. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. The American Naturalist, 180(4): E75−E89. doi: 10.1086/667574
    [17]
    Etienne RS, Haegeman B, Stadler T, Aze T, Pearson PN, Purvis A, et al. 2012. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B:Biological Sciences, 279(1732): 1300−1309. doi: 10.1098/rspb.2011.1439
    [18]
    Ezard THG, Quental TB, Benton MJ. 2016. The challenges to inferring the regulators of biodiversity in deep time. Philosophical Transactions of the Royal Society B:Biological Sciences, 371(1691): 20150216. doi: 10.1098/rstb.2015.0216
    [19]
    Fenton MB. 1999. Describing the echolocation calls and behaviour of bats. Acta Chiropterologica, 1(2): 127−136.
    [20]
    Fitzjohn RG. 2010. Quantitative traits and diversification. Systematic Biology, 59(6): 619−633. doi: 10.1093/sysbio/syq053
    [21]
    Fitzjohn RG. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution, 3(6): 1084−1092. doi: 10.1111/j.2041-210X.2012.00234.x
    [22]
    Foley NM, Thong VD, Soisook P, Goodman SM, Armstrong KN, Jacobs DS, et al. 2015. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Molecular Biology and Evolution, 32(2): 313−333. doi: 10.1093/molbev/msu329
    [23]
    Fox J. 2006. Teacher's corner: structural equation modeling with the sem package in R. Structural Equation Modeling:A Multidisciplinary Journal, 13(3): 465−486. doi: 10.1207/s15328007sem1303_7
    [24]
    Guillén-Servent A, Francis CM, Ricklefs RE. 2003. Phylogeny and biogeography of the horseshoe bats. In: Csorba G, Ujhelyi P, Thomas N. Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Shropshire: Alana Books.
    [25]
    Gunnell GF, Simmons NB. 2005. Fossil evidence and the origin of bats. Journal of Mammalian Evolution, 12(1): 209−246.
    [26]
    Guo YY, Luo YB, Liu ZJ, Wang XQ. 2015. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Molecular Ecology, 24(11): 2838−2855. doi: 10.1111/mec.13189
    [27]
    Gwitira I, Murwira A, Shekede MD, Masocha M, Chapano C. 2014. Precipitation of the warmest quarter and temperature of the warmest month are key to understanding the effect of climate change on plant species diversity in Southern African savannah. African Journal of Ecology, 52(2): 209−216. doi: 10.1111/aje.12105
    [28]
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965−1978. doi: 10.1002/joc.1276
    [29]
    Jackson DA. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74(8): 2204−2214. doi: 10.2307/1939574
    [30]
    Jacobs DS, Babiker H, Bastian A, Kearney T, Van Eeden R, Bishop JM. 2013. Phenotypic convergence in genetically distinct lineages of a Rhinolophus species complex (Mammalia, Chiroptera). PLoS One, 8(12): e82614. doi: 10.1371/journal.pone.0082614
    [31]
    Jacobs DS, Bastian A. 2018. High duty cycle echolocation may constrain the evolution of diversity within horseshoe bats (Family: Rhinolophidae). Diversity, 10(3): 85. doi: 10.3390/d10030085
    [32]
    Jones G. 1999. Scaling of echolocation call parameters in bats. Journal of Experimental Biology, 202(23): 3359−3367. doi: 10.1242/jeb.202.23.3359
    [33]
    Jones G, Holderied MW. 2007. Bat echolocation calls: adaptation and convergent evolution. Proceedings of the Royal Society B:Biological Sciences, 274(1612): 905−912. doi: 10.1098/rspb.2006.0200
    [34]
    Jones G, Teeling EC. 2006. The evolution of echolocation in bats. Trends in Ecology & Evolution, 21(3): 149−156.
    [35]
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11): 1463−1464. doi: 10.1093/bioinformatics/btq166
    [36]
    Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6): 1695−1701. doi: 10.1093/molbev/mss020
    [37]
    Losos JB. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10): 995−1003. doi: 10.1111/j.1461-0248.2008.01229.x
    [38]
    Machac A, Storch D, Wiens JJ. 2013. Ecological causes of decelerating diversification in carnivoran mammals. Evolution, 67(8): 2423−2433. doi: 10.1111/evo.12126
    [39]
    Maluleke T, Jacobs DS, Winker H. 2017. Environmental correlates of geographic divergence in a phenotypic trait: a case study using bat echolocation. Ecology and Evolution, 7(18): 7347−7361. doi: 10.1002/ece3.3251
    [40]
    Mazel F, Davies TJ, Gallien L, Renaud J, Groussin M, Münkemüller T, et al. 2016. Influence of tree shape and evolutionary time‐scale on phylogenetic diversity metrics. Ecography, 39(10): 913−920. doi: 10.1111/ecog.01694
    [41]
    McKenna MC, Bell SK. 1997. Classification of mammals above the species level. New York: Columbia University Press.
    [42]
    Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science, 334(6055): 521−524. doi: 10.1126/science.1211028
    [43]
    Moen D, Morlon H. 2014. Why does diversification slow down?. Trends in Ecology & Evolution, 29(4): 190−197.
    [44]
    Morley RJ. 2003. Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics, 6(1–2): 5–20.
    [45]
    Morlon H, Lewitus E, Condamine FL, Manceau M, Clavel J, Drury J. 2016. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods in Ecology and Evolution, 7(5): 589−597. doi: 10.1111/2041-210X.12526
    [46]
    Morlon H, Parsons TL, Plotkin JB. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences of the United States of America, 108(39): 16327−16332. doi: 10.1073/pnas.1102543108
    [47]
    Mutumi GL, Jacobs DS, Winker H. 2017. The relative contribution of drift and selection to phenotypic divergence: a test case using the horseshoe bats Rhinolophus simulator and Rhinolophus swinnyi. Ecology and Evolution, 7(12): 4299–4311.
    [48]
    Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2): 289−290. doi: 10.1093/bioinformatics/btg412
    [49]
    Pfennig K, Pfennig D. 2009. Character displacement: ecological and reproductive responses to a common evolutionary problem. The Quarterly Review of Biology, 84(3): 253−276. doi: 10.1086/605079
    [50]
    R Core Team. 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
    [51]
    Rabosky DL. 2013. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 44: 481−502. doi: 10.1146/annurev-ecolsys-110512-135800
    [52]
    Rabosky DL, Donnellan SC, Grundler M, Lovette IJ. 2014a. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Systematic Biology, 63(4): 610−627. doi: 10.1093/sysbio/syu025
    [53]
    Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, et al. 2014b. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution, 5(7): 701−707. doi: 10.1111/2041-210X.12199
    [54]
    Ravel A, Marivaux L, Qi T, Wang YQ, Beard KC. 2014. New chiropterans from the middle Eocene of Shanghuang (Jiangsu Province, Coastal China): new insight into the dawn horseshoe bats (Rhinolophidae) in Asia. Zoologica Scripta, 43(1): 1−23. doi: 10.1111/zsc.12027
    [55]
    Rebelo H, Tarroso P, Jones G. 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16(2): 561−576. doi: 10.1111/j.1365-2486.2009.02021.x
    [56]
    Scotese CR. 2001. Atlas of earth history. PALEOMAP project. Arlington (TX),http://www.scotese.com.
    [57]
    Shi JJ, Rabosky DL. 2015. Speciation dynamics during the global radiation of extant bats. Evolution, 69(6): 1528−1545. doi: 10.1111/evo.12681
    [58]
    Simmons NB. 2005. Order chiroptera. In: Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: The Johns Hopkins University Press.
    [59]
    Simmons NB, Geisler JH. 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 235: 188−192.
    [60]
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    [61]
    Steeman ME, Hebsgaard MB, Fordyce RE, Ho SYW, Rabosky DL, Nielsen R, et al. 2009. Radiation of extant Cetaceans driven by restructuring of the oceans. Systematic Biology, 58(6): 573−585. doi: 10.1093/sysbio/syp060
    [62]
    Stoffberg S, Jacobs DS, Mackie IJ, Matthee CA. 2010. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Molecular Phylogenetics and Evolution, 54(1): 1−9. doi: 10.1016/j.ympev.2009.09.021
    [63]
    Stoffberg S, Jacobs DS, Matthee CA. 2011. The divergence of echolocation frequency in horseshoe bats: moth hearing, body size or habitat?. Journal of Mammalian Evolution, 18(2): 117−129. doi: 10.1007/s10914-011-9158-x
    [64]
    Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1): vey016.
    [65]
    Sun KP, Luo L, Kimball RT, Wei XW, Jin LR, Jiang TL, et al. 2013. Geographic variation in the acoustic traits of greater horseshoe bats: testing the importance of drift and ecological selection in evolutionary processes. PLoS One, 8(8): e70368. doi: 10.1371/journal.pone.0070368
    [66]
    Swartz SM, Freeman PW, Stockwell EF. 2003. Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. In: Kunz TH, Fenton MB. Bat Ecology. Chicago: The University of Chicago Press, 257–300.
    [67]
    Taylor PJ, Stoffberg S, Monadjem A, Schoeman MC, Bayliss J, Cotterill FPD. 2012. Four new bat species (Rhinolophus hildebrandtii complex) reflect plio-pleistocene divergence of dwarfs and giants across an Afromontane archipelago. PLoS One, 7(9): e41744. doi: 10.1371/journal.pone.0041744
    [68]
    Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307(5709): 580−584. doi: 10.1126/science.1105113
    [69]
    Thomas JA, Moss CF, Vater M. 2004. Echolocation in Bats and Dolphins. Chicago: University of Chicago Press.
    [70]
    Voje KL, Holen ØH, Liow LH, Stenseth NC. 2015. The role of biotic forces in driving macroevolution: beyond the Red Queen. Proceedings of the Royal Society B:Biological Sciences, 282(1808): 20150186. doi: 10.1098/rspb.2015.0186
    [71]
    Weir JT, Mursleen S. 2013. Diversity‐dependent cladogenesis and trait evolution in the adaptive radiation of the auks (Aves: Alcidae). Evolution:International Journal of Organic Evolution, 67(2): 403−416. doi: 10.1111/j.1558-5646.2012.01786.x
    [72]
    Wiens JJ. 2011. The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. The Quarterly Review of Biology, 86(2): 75−96. doi: 10.1086/659883
    [73]
    Willig MR. 2003. Patterns of range size, richness, and body size in the Chiroptera. In: Kunz TH, Fenton MB. Bat Ecology. Chicago: The University of Chicago Press, 580–621.
    [74]
    Wilson DE, Mittermeier RA. 2019. Handbook of the Mammals of the World: Vol. 9 Bats. Barcelona: Lynx.
    [75]
    Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, et al. 2010. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology, 23(8): 1581−1596. doi: 10.1111/j.1420-9101.2010.02029.x
    [76]
    Yu W, Wu Y, Yang G. 2014. Early diversification trend and Asian origin for extent bat lineages. Journal of Evolutionary Biology, 27(10): 2204−2218. doi: 10.1111/jeb.12477
    [77]
    Yu WH, Xu JX, Wu Y, Yang G. 2012. A comparative study of mammalian diversification pattern. International Journal of Biological Sciences, 8(4): 486−497. doi: 10.7150/ijbs.3982
    [78]
    Yu Y, Harris AJ, Blair C, He XJ. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87: 46−49. doi: 10.1016/j.ympev.2015.03.008
  • ZR-2022-265 -Supplementary Materials.rar
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (408) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return