Volume 37 Issue 5
Sep.  2016
Turn off MathJax
Article Contents
Xiu-Feng LI, Chong HAN, Cai-Rong ZHONG, Jun-Qiu XU, Jian-Rong HUANG. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene. Zoological Research, 2016, 37(5): 307-312. doi: 10.13918/j.issn.2095-8137.2016.5.307
Citation: Xiu-Feng LI, Chong HAN, Cai-Rong ZHONG, Jun-Qiu XU, Jian-Rong HUANG. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene. Zoological Research, 2016, 37(5): 307-312. doi: 10.13918/j.issn.2095-8137.2016.5.307

Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene

doi: 10.13918/j.issn.2095-8137.2016.5.307
More Information
  • Corresponding author: Jian-Rong HUANG
  • Received Date: 2016-07-15
  • Rev Recd Date: 2016-09-08
  • Publish Date: 2016-09-18
  • Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans.
  • loading
  • [1]
    Baratti M, Goti E, Messana G. 2005. High level of genetic differentiation in the marine isopod Sphaeroma terebrans (Crustacea Isopoda Sphaeromatidae) as inferred by mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology, 315(2): 225-234.
    [2]
    Baratti M, Filippelli M, Messana G. 2011. Complex genetic patterns in the mangrove wood-borer Sphaeroma terebrans Bate, 1866 (Isopoda, Crustacea, Sphaeromatidae) generated by shoreline topography and rafting dispersal. Journal of Experimental Marine Biology and Ecology, 398(1-2): 73-82.
    [3]
    Bate CS. 1866. II.-Carcinological Gleanings.-No. II. Annals and Magazine of Natural History, 17(97): 24-31.
    [4]
    Blair D, Waycott M, Byrne L, Dunshea G, Smith-Keune C, Neil KM. 2006. Molecular discrimination of Perna (Mollusca: Bivalvia) species using the polymerase chain reaction and species-specific mitochondrial primers. Marine Biotechnology, 8(4): 380-385.
    [5]
    Estevez ED. 1978. Ecology of Sphaeroma terebrans Bate, a wood boring isopod, in a Florida mangrove forest. Ph. D. thesis, University of South Florida, Tampa, 1-154.
    [6]
    Estevez ED, Simon JL. 1975. Systematics and ecology of Sphaeroma (Crustacea: Isopoda) in the mangrove habitats of Florida. In: Proceedings of the International Symposium on Biology and Management of Mangroves. Gainesville: Institute of Food and Agricultural Sciences, University of Florida.
    [7]
    Fan HQ, Liu WA, Zhong CR, Ni X. 2014. Analytic study on the damages of wood-boring isopod, Sphaeroma, to China mangroves. Guangxi Sciences, 21(2): 140-146, 152. (in Chinese)
    [8]
    Feng YW, Li Q, Kong LF, Zheng XD. 2011. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Molecular Biology Reports, 38(1): 291-299.
    [9]
    Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1): 154-159.
    [10]
    Harrison K, Holdich DM. 1984. Hemibranchiate sphaeromatids (Crustacea: Isopoda) from Queensland, Australia, with a world-wide review of the genera discussed. Zoological Journal of the Linnean Society, 81(4): 275-387.
    [11]
    Hebert PDN, Ratnasingham S, de Waard JR. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(S1): S96-S99.
    [12]
    John PA. 1970. Observations on the boring activity of Sphaeroma terebrans Spence Bate, a wood boring isopod. Zoologischer Anzeiger, 185(5-6): 379–387.
    [13]
    Jones DA, Icely JD. 1981. Excirolana bowmani, a new mangrove-boring isopod from Kenya (Isopoda, Cirolanidae). Crustaceana, 40(3): 266-271.
    [14]
    Kensley B, Schotte M. 1999. New records of isopods from the Indian River Lagoon, Florida (Crustacea: Peracarida). Proceedings of the Biological Society of Washington, 112(4): 695-713.
    [15]
    Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111-120.
    [16]
    Knowlton N. 1993. Sibling species in the sea. Annual Review of Ecology and Systematics, 24(1): 189-216.
    [17]
    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451-1452.
    [18]
    Ma HY, Ma CY, Ma LB. 2012. Molecular identification of genus Scylla (Decapoda: Portunidae) based on DNA barcoding and polymerase chain reaction. Biochemical Systematics and Ecology, 41: 41-47.
    [19]
    Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ. 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89(2): 155-185.
    [20]
    Nei M. 1987. Molecular Evolutionary Genetics. Columbia: Columbia University Press.
    [21]
    Perry DM. 1988. Effects of associated fauna on growth and productivity in the red mangrove. Ecology, 69(4): 1064-1075.
    [22]
    Persis M, Reddy ACS, Rao LM, Khedkar GD, Ravinder K, Nasruddin K. 2009. COI (cytochrome oxidase-I) sequence based studies of Carangid fishes from Kakinada coast, India. Molecular Biology Reports, 36(7): 1733-1740.
    [23]
    Puillandre N, Strong EE, Bouchet P, Boisselier MC, Couloux A, Samadi S. 2009. Identifying gastropod spawn from DNA barcodes: possible but not yet practicable. Molecular Ecology Resources, 9(5): 1311-1321.
    [24]
    Rehm A, Humm HJ. 1973. Sphaeroma terebrans: a threat to the mangroves of southwestern Florida. Science, 182(4108): 173-174.
    [25]
    Richardson H. 1897. Description of a new species of Sphaeroma. Proceedings of the Biological Society of Washington, 11: 105-107.
    [26]
    Roehrdanz RL. 1993. An improved primer for PCR amplification of mitochondrial DNA in a variety of insect species. Insect Molecular Biology, 2(2): 89-91.
    [27]
    Rozas J, Rozas R. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics, 15(2): 174-175.
    [28]
    Schindel DE, Miller SE. 2005. DNA barcoding a useful tool for taxonomists. Nature, 435(7038): 17.
    [29]
    Ståhls G, Vujic A, Pérez-Bañon C, Radenkovic S, Rojo S, Petanidou T. 2009. COI barcodes for identification of Merodon hoverflies (Diptera, Syrphidae) of Lesvos Island, Greece. Molecular Ecology Resources, 9(6): 1431-1438.
    [30]
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731-2739.
    [31]
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876-4882.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1728) PDF downloads(804) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return