• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
毕旭鹏, 张国捷. 2021: 早期硬骨鱼类拥有的祖先发育潜能有助于脊椎动物从水生到陆生的转变. 动物学研究, 42(2): 135-137. DOI: 10.24272/j.issn.2095-8137.2021.066
引用本文: 毕旭鹏, 张国捷. 2021: 早期硬骨鱼类拥有的祖先发育潜能有助于脊椎动物从水生到陆生的转变. 动物学研究, 42(2): 135-137. DOI: 10.24272/j.issn.2095-8137.2021.066
Xu-Peng Bi, Guo-Jie Zhang. 2021. Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition. Zoological Research, 42(2): 135-137. DOI: 10.24272/j.issn.2095-8137.2021.066
Citation: Xu-Peng Bi, Guo-Jie Zhang. 2021. Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition. Zoological Research, 42(2): 135-137. DOI: 10.24272/j.issn.2095-8137.2021.066

早期硬骨鱼类拥有的祖先发育潜能有助于脊椎动物从水生到陆生的转变

Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition

  • 摘要: 从水生到陆生是脊椎动物演化史上的一次飞跃,最终形成了今天包括两栖类、爬行类、鸟类和哺乳类在内的所有四足动物。我们的鱼类祖先第一次登陆大约发生于3.7亿年前的泥盆纪末期。通过对这一演化过程中的重要过渡物种如提塔利克鱼、棘螈和鱼石螈等化石的分析,发现了许多对脊椎动物陆生适应至关重要的形态学和解剖学结构。然而,通过更为古老的鱼类同源形态结构研究表明,一些与脊椎动物登陆有关的结构组织已经在早期硬骨鱼类中出现。例如,泥盆纪洛赫考夫晚期的斑鳞鱼肩胛带化石显示了内骨骼的关节面,这表明早期肉鳍鱼已经拥有与四足类肱骨相似的内骨骼发育模式。此外, 和空气呼吸相关的肺组织存在于早期辐鳍鱼类(如多鳍鱼属),所有的肉鳍鱼类以及一些鱼类化石物种中。这些化石证据表明,水陆演化可能借由一些早在登陆发生之前就已经存在的身体特征和遗传组成来实现,而不仅仅依赖于登陆过程产生的遗传创新序列。对于古生物学家来说,这种祖先发育调控网络是否存在,以及这一祖先调控网络最早追溯到哪个演化节点都是具有挑战性的问题。最近发表在《细胞》杂志上的三篇相关论文为这一假说提供了新的见解。其中两篇比较基因组学研究分别通过对非洲肺鱼、多鳍鱼、匙吻鲟、弓鳍鱼和鳄雀鳝的基因组组装,分析揭示了与四肢、肺和心脏等相关的祖先发育潜能在早期硬骨鱼类中就已经建立,它们在后续脊椎动物登陆相关的一系列生物功能的形成和演化中发挥着重要作用。虽然这些祖先特征在经历了第三次特异全基因组加倍的真骨鱼身上已经消失,但是另外一项研究工作通过修改斑马鱼的基因序列,重新激活了这些祖先遗传调控网络并在该鱼身上重现了这一古老特征。

     

    Abstract: The water-to-land transition was a major step in vertebrate evolution and eventually gave rise to the tetrapods, including amphibians, reptiles, birds, and mammals. The first land invasion of our fish ancestors is considered to have occurred during the late Devonian period ~370 million years ago (Mya) (Daeschler et al., 2006). Many fossils from important transitional species, such as Tiktaalik, Acanthostega, and Ichthyostega, have helped to identify key morphological and anatomical structures crucial to vertebrate terrestrial adaptation (Coates, 1996; Johanson & Ahlberg, 2001; Shubin et al., 2006). However, homologous analyses of these body forms and structures in more ancient species have suggested that some of the morphologies related to vertebrate land dispersal were already present in early bony fish species. For instance, the presence of shoulder girdles on the articular surface of the endoskeleton in Late Lochkovian Psarolepis indicates that stem sarcopterygians already possessed an endoskeletal fin pattern similar to that of tetrapod stylopods (Zhu & Yu, 2009). In addition, primitive lungs, which originated from the respiratory pharynx and were located on the ventral side of the alimentary tracts, can be observed in several extant basal actinopterygians (bichirs, reedfish) and all extant sarcopterygians, as well as some fossils of coelacanths and salamanders (Cupello et al., 2017; Tissier et al., 2017) (Figure 1). This evidence suggests that, instead of relying on genetic innovations evolving after the first fish left their water habitat, this transition may have been accomplished by adopting physical traits and genetic components that already existed far earlier than when the transition occurred. Whether such an ancestral developmental regulatory network was present or not and how far this ancestral network can be traced in history are challenging questions for paleontologists. Three recent papers published in Cell provide new insights into this hypothesis. Wang et al. (2021) sequenced the giant genome of lungfish, the closest fish species to tetrapods, and Bi et al. (2021) sequenced the genomes of multiple early divergent ray-finned fish. Comparative genomic analyses from these two studies confirmed the presence of ancestral genetic regulatory networks that likely played essential roles in the development and evolution of various biological functions related to vertebrate land invasion. Although certain ancestral features have been lost in teleosts, the most derived fish lineage to evolve after whole-genome duplication (Sato & Nishida, 2010), they have been recreated in zebrafish by modifying their genetic makeup to reactivate the ancestral genetic network (Hawkins et al., 2021).

     

/

返回文章
返回