• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
Kou PENG, Cheng-Yuan WANG, Jun-Hua WANG, Jun-Qing SHENG, Jian-Wu SHI, Jian LI, Yi-Jiang HONG. 2014: Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii). 动物学研究, 35(5): 389-397. DOI: 10.13918/j.issn.2095-8137.2014.5.389
引用本文: Kou PENG, Cheng-Yuan WANG, Jun-Hua WANG, Jun-Qing SHENG, Jian-Wu SHI, Jian LI, Yi-Jiang HONG. 2014: Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii). 动物学研究, 35(5): 389-397. DOI: 10.13918/j.issn.2095-8137.2014.5.389
Kou PENG, Cheng-Yuan WANG, Jun-Hua WANG, Jun-Qing SHENG, Jian-Wu SHI, Jian LI, Yi-Jiang HONG. 2014: Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii). Zoological Research, 35(5): 389-397. DOI: 10.13918/j.issn.2095-8137.2014.5.389
Citation: Kou PENG, Cheng-Yuan WANG, Jun-Hua WANG, Jun-Qing SHENG, Jian-Wu SHI, Jian LI, Yi-Jiang HONG. 2014: Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii). Zoological Research, 35(5): 389-397. DOI: 10.13918/j.issn.2095-8137.2014.5.389

Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii)

Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii)

  • 摘要: The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among vertebrates. Here, for the first time we cloned the full-length cDNA sequence of Hyriopsis schlegelii (Hs-BTG1), an economically important freshwater shellfish and potential indicator of environmental heavy metal pollution, for the first time. Using rapid amplification of cDNA ends (RACE) together with splicing the EST sequence from a haemocyte cDNA library, we found that Hs-BTG1 contains a 525 bp open reading frame (ORF) encoding a 174 amino-acid polypeptide, a 306 bp 5' untranslated region (5' UTR), and a 571 bp 3' UTR with a Poly(A) tail as well as a transcription termination signal (AATAAA). Homologue searching against GenBank revealed that Hs-BTG1 was closest to Crassostrea gigas BTG1, sharing 50.57% of protein identities. Hs-BTG1 also shares some typical features of the BTG/TOB family, possessing two well-conserved A and B boxes. Clustering analysis of Hs-BTG1 and other known BTGs showed that Hs-BTG1 was also closely related to BTG1 of C. gigas from the invertebrate BTG1 clade. Function prediction via homology modeling showed that both Hs-BTG1 and C. gigas BTG1 share a similar three-dimensional structure with Homo sapiens BTG1. Tissue-specific expression analysis of the Hs-BTG1 via real-time PCR showed that the transcripts were constitutively expressed, with the highest levels in the hepatopancreas and gills, and the lowest in both haemocyte and muscle tissue. Expression levels of Hs-BTG1 in hepatopancreas (2.03-fold), mantle (2.07-fold), kidney (2.2-fold) and haemocyte (2.5-fold) were enhanced by cadmium (Cd2+) stress, suggesting that Hs-BTG1 may have played a significant role in H. schlegelii adaptation to adverse environmental conditions.

     

    Abstract: The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among vertebrates. Here, for the first time we cloned the full-length cDNA sequence of Hyriopsis schlegelii (Hs-BTG1), an economically important freshwater shellfish and potential indicator of environmental heavy metal pollution, for the first time. Using rapid amplification of cDNA ends (RACE) together with splicing the EST sequence from a haemocyte cDNA library, we found that Hs-BTG1 contains a 525 bp open reading frame (ORF) encoding a 174 amino-acid polypeptide, a 306 bp 5' untranslated region (5' UTR), and a 571 bp 3' UTR with a Poly(A) tail as well as a transcription termination signal (AATAAA). Homologue searching against GenBank revealed that Hs-BTG1 was closest to Crassostrea gigas BTG1, sharing 50.57% of protein identities. Hs-BTG1 also shares some typical features of the BTG/TOB family, possessing two well-conserved A and B boxes. Clustering analysis of Hs-BTG1 and other known BTGs showed that Hs-BTG1 was also closely related to BTG1 of C. gigas from the invertebrate BTG1 clade. Function prediction via homology modeling showed that both Hs-BTG1 and C. gigas BTG1 share a similar three-dimensional structure with Homo sapiens BTG1. Tissue-specific expression analysis of the Hs-BTG1 via real-time PCR showed that the transcripts were constitutively expressed, with the highest levels in the hepatopancreas and gills, and the lowest in both haemocyte and muscle tissue. Expression levels of Hs-BTG1 in hepatopancreas (2.03-fold), mantle (2.07-fold), kidney (2.2-fold) and haemocyte (2.5-fold) were enhanced by cadmium (Cd2+) stress, suggesting that Hs-BTG1 may have played a significant role in H. schlegelii adaptation to adverse environmental conditions.

     

/

返回文章
返回