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1. STIC and FREEC results

STIC is a recently developed method to detect single nucleotide variants(SNVs)

SNVs and distinguish germline and somatic mutations. STIC detects SNVs by

training a back propagation (BP) neural network algorithm on a set of extracted

features and creating an iterative process to distinguish somatic and germline SNVs.

STIC input is a single tumor sample. Here, we used STIC to detect SNVs for

downstream analysis. To test the detection effect of STIC on SNVs, a simulation

experiment was performed. Both precision and recall were used to estimate STIC

performance, with results shown in Supplementary Figure 1.

Supplementary Figure 1. STIC performance based on sensitivity and recall using simulation

datasets with tumor purity ranging from 0.2 to 0.8 and coverage of 30X.

The FREEC tool can automatically calculate copy number and allele content spectra

in next-generation sequencing (NGS) data, thereby predicting the regions where the

genome has changed. We used FREEC to detect copy number variations (CNVs). The

copy number detection results are presented in Supplementary Figure 2.



Supplementary Figure 2. Performance of FREEC based on simulation datasets with tumor

purity of 0.7 and coverage of 30X.

In Supplementary Figure 2, the simulation datasets had a tumor purity of 0.7,

coverage of 30X, and intercepted positions of 1.0×107 to 1.2×107, representing the

copy number detection results. The red line represents the simulation data results, the

green line represents the FREEC detection results, and the yellow line represents their

coincidence. FREEC was accurate at detecting CNV length; although copy number

was slightly different from the simulation results, which may impact our downstream

analysis, overall, the FREEC detection results for CNVs were good.

2. SVM classifier

Here, we used the support vector machine(SVM) as a binary classifier. The training

dataset was denoted as ������ , where �� � ���� � �� ����� �� is the �-th input vector,

and �� is the corresponding class label (1 or 0), with 1 and 0 representing germline

and somatic mutations, respectively. The training dataset contained only two data



types, labeled 1 and 0. To improve the classifier’s ability, the boundary distance

between the two types of data needs to be maximized (Brereton & Lloyd, 2010). The

SVM classifier was obtained by optimizing the objective function, which can balance

the terms of forcing separation classes and maximizing margin separation (Hastie &

Tibshirani, 1998). SVM training was performed to determine the only relevant

samples of the optimal separation boundary, called support vectors (SVs). The

problem was transformed into dual space and solved by introducing the Lagrange

Multipliers Vector in the following form (Gold & Sollich, 2003; Suykens, 2002):
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where α � (�������) is the Lagrange multipliers vector and � ����� � �(��)��(��)

is the kernel function (Brereton & Lloyd, 2010).

As real data classification is usually inseparable and non-linear, the input vector

is mapped to high-dimensional feature space, so that data in the feature space will

become linearly separable. The linear SVM method is then used to train the separation

hyperplane parameters. The high-dimensional calculations increase sharply,

introducing dimensionality and kernel issues. Here, we used a Radial Basis Function

(RBF) kernel, which has excellent non-linear modeling performance (Hsu et al., 2008;

Renukadevi & Thangaraj, 2013).
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where �� is the common width. The decision function of SVM, � � , and output

prediction label of the input vector, �, can be written as:
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3. 10-fold cross-validation

To obtain the best classification effect, the C and γ parameters need to be set when

RBF is the kernel function (Schölkopf & Smola, 2002). Parameter C is the penalty

coefficient and the tolerance of the model to errors decreases as C increases.

Parameter γ, which is attached to RBF, determines the distribution of the original data

mapped to the high-dimensional feature space, which is inversely proportional to the

number of support vectors. The number of support vectors affects the classification

speed of the classifier. Therefore, the selection of an appropriate C and γ is required to

improve classification efficiency by ensuring performance of the classifier.

There are multiple ways to perform a hyperparameter search, including grid,

random, and heuristic searches. Grid searches are straightforward and practical

(Budiman et al., 2017) and entail looping through all candidate parameters and trying

every possible combination, resulting in the best-performing set of parameters.

Simultaneously, acting on the initial data division results and performing cross-

validation reduces contingency (Tsamardinos et al., 2015). Cross-validation randomly

divides the dataset into v partitions, called v-folds. In general, the dataset is divided

into 10-fold cross-validations (Syarif et al., 2016), with one part used interchangeably

for the test dataset, and the other parts used for training. As shown in Supplementary

Figure 3, the darker shade represents the test fold and lighter shade represents the

training folds.

Supplementary Figure 3. 10-fold cross-validation.



4. Simulation study results

Supplementary Figure 4. Performance comparisons of five methods based on F1-scores using

simulation datasets, with tumor purity ranging from 0.2 to 0.8 and coverage ranging from 10X

to 50X.



5. Values of recall and precision for five methods using simulation dataset

Coverage=10X

Coverage=20X

Method Purity=0.2 Purity=0.3 Purity=0.4 Purity=0.5 Purity=0.6 Purity=0.7 Purity=0.8

svmSomatic
precision 0.957 0.931 0.85 0.777 0.868 0.917 0.899
recall 0.141 0.269 0.41 0.592 0.638 0.695 0.759

STIC
precision 0.825 0.825 0.839 0.558 0.641 0.754 0.669
recall 0.137 0.236 0.254 0.258 0.26 0.568 0.595

FaSD-
somatic

precision 0.742 0.814 0.839 0.852 0.857 0.856 0.856
recall 0.033 0.052 0.064 0.072 0.075 0.076 0.075

VarScan2
precision 0.997 0.998 0.998 0.999 0.999 0.999 0.999

recall 0.185 0.294 0.373 0.426 0.461 0.484 0.5

SNVSniffer
precision 0.657 0.819 0.884 0.914 0.93 0.94 0.946
recall 0.079 0.185 0.306 0.421 0.523 0.61 0.682

Method Purity=0.2 Purity=0.3 Purity=0.4 Purity=0.5 Purity=0.6 Purity=0.7 Purity=0.8

svmSomatic
precision 0.854 0.831 0.782 0.757 0.78 0.808 0.824
recall 0.171 0.372 0.544 0.711 0.8 0.842 0.866

STIC
precision 0.865 0.901 0.895 0.87 0.856 0.87 0.889
recall 0.166 0.298 0.324 0.292 0.3 0.393 0.546

FaSD-
somatic

precision 0.783 0.846 0.871 0.885 0.891 0.89 0.878
recall 0.132 0.217 0.343 0.434 0.487 0.495 0.491

VarScan2
precision 0.998 0.998 0.999 0.999 0.999 0.999 0.999

recall 0.199 0.377 0.499 0.587 0.656 0.689 0.694

SNVSniffer
precision 0.987 0.994 0.996 0.997 0.997 0.997 0.997
recall 0.115 0.286 0.433 0.542 0.618 0.672 0.696



Coverage=30X

Coverage=40X

Method Purity=0.2 Purity=0.3 Purity=0.4 Purity=0.5 Purity=0.6 Purity=0.7 Purity=0.8

svmSomatic
precision 0.917 0.887 0.818 0.776 0.794 0.85 0.853
recall 0.251 0.482 0.643 0.802 0.875 0.868 0.887

STIC
precision 0.931 0.944 0.933 0.907 0.881 0.88 0.902
recall 0.247 0.434 0.458 0.404 0.369 0.422 0.596

FaSD-
somatic

precision 0.826 0.881 0.901 0.909 0.909 0.903 0.897
recall 0.287 0.446 0.549 0.598 0.594 0.563 0.528

VarScan2
precision 1 1 1 1 1 1 1

recall 0.182 0.396 0.531 0.616 0.675 0.706 0.72

SNVSniffer
precision 1 1 1 1 1 1 1
recall 0.208 0.423 0.57 0.639 0.695 0.723 0.735

Method Purity=0.2 Purity=0.3 Purity=0.4 Purity=0.5 Purity=0.6 Purity=0.7 Purity=0.8

svmSomatic
precision 0.971 0.937 0.865 0.792 0.849 0.895 0.897
recall 0.414 0.633 0.754 0.88 0.871 0.888 0.917

STIC
precision 0.972 0.969 0.956 0.929 0.894 0.883 0.907
recall 0.409 0.595 0.6 0.495 0.411 0.43 0.62

FaSD-
somatic

precision 0.937 0.952 0.957 0.958 0.957 0.954 0.947
recall 0.378 0.579 0.711 0.74 0.748 0.738 0.725

VarScan2
precision 1 1 1 1 1 1 1

recall 0.242 0.39 0.538 0.647 0.712 0.742 0.753

SNVSniffer
precision 1 1 1 1 1 1 1
recall 0.347 0.55 0.643 0.705 0.73 0.739 0.742



Coverage=50X

Method Purity=0.2 Purity=0.3 Purity=0.4 Purity=0.5 Purity=0.6 Purity=0.7 Purity=0.8

svmSomatic
precision 0.897 0.85 0.786 0.793 0.824 0.862 0.899
recall 0.519 0.729 0.857 0.893 0.921 0.935 0.948

STIC
precision 0.981 0.971 0.956 0.93 0.899 0.893 0.921
recall 0.211 0.412 0.416 0.386 0.364 0.403 0.621

FaSD-
somatic

precision 0.957 0.97 0.974 0.975 0.976 0.975 0.971
recall 0.436 0.647 0.723 0.747 0.756 0.744 0.739

VarScan2
precision 1 1 1 1 1 1 1

recall 0.239 0.392 0.668 0.684 0.751 0.776 0.786

SNVSniffer
precision 1 1 1 1 1 1 1
recall 0.465 0.622 0.709 0.732 0.768 0.773 0.775
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