Minghao GONG, Yanling SONG, Zhisong YANG, Chen LIN. Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca). Zoological Research, 2012, 33(E1-2): 18-24.
Citation: Minghao GONG, Yanling SONG, Zhisong YANG, Chen LIN. Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca). Zoological Research, 2012, 33(E1-2): 18-24.

Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca)

Funds:  This study was funded by the State Forestry Administration, China
More Information
  • Author Bio:

    Minghao GONG

  • Corresponding author: Minghao GONG
  • Received Date: 2011-12-05
  • Rev Recd Date: 2012-03-31
  • Publish Date: 2012-06-05
  • Population viability analysis (PVA) is a tool to evaluate the risk of extinction for endangered species and aid conservation decision-making. The quality of PVA output is dependent on parameters related to population dynamics and life-history; however, it has been difficult to collect this information for the giant panda (Aliuropoda melanoleuca), a rare and endangered mammal native to China, confined to some 30 fragmented habitat patches. Since giant pandas are long-lived, mature late, have lower reproductive rates, and show little sexual dimorphism, obtaining data to perform adequate PVA has been difficult. Here, we develop a parameter sensitivity index by modeling the dynamics of six giant panda populations in the Minshan Mountains, in order to determine the parameters most influential to giant panda populations. Our data shows that the giant panda populations are most sensitive to changes in four female parameters: initial breeding age, reproductive rate, mortality rate between age 0 and 1, and mortality rate of adults. The parameter sensitivity index strongly correlated with initial population size, as smaller populations were more sensitive to changes in these four variables. This model suggests that demographic parameters of females have more influence on the results of PVA, indicating that females may play a more important role in giant panda population dynamics than males. Consequently, reintroduction of female individuals to a small giant panda population should be a high priority for conservation efforts. Our findings form a technical basis for the coming program of giant panda reintroduction, and inform which parameters are crucial to successfully and feasibly monitoring wild giant panda populations.
  • 加载中
  • [1] Brook BW. 2000. Pessimistic and optimistic bias in population viability analysis 
    [J]. Conserv Biol, 14(2): 564-566. 
    [3] Brook BW, Burgman MA, Akçakaya HR, O’grady JJ, Frankham R. 2002. Critiques of PVA ask the wrong questions: throwing the heuristic baby out with the numerical bath water [J]. Conserv Biol, 16(1): 262-263. 
    [4] Chapman AP, Brook BW, Clutton-Brock TH, Grenfell BT, Frankham R. 2001. Population viability analyses on a cycling population: a cautionary tale [J]. Biol Conserv, 97(1): 61-69. 
    [5] Colby JL, Lü Z, Dinerstein E, Wang H, Olson DM, Zhu CQ, Wang DJ. 2001. Giant pandas in a changing landscape [J]. Science, 294(5546): 1465. 
    [6] Dennis B, Mutholland PL, Scott JM. 1991. Estimation of growth and extinction parameters for endangered species [J]. Ecol Mono, 61(2): 115-143. 
    [7] Ellner SP, Fieberg J, Ludwig D, Wilcox C. 2002. Precision of population viability analysis [J]. Conserv Biol, 16(1): 258-261. 
    [8] Guo J, Hu JC. 1999. The population viability analysis of giant panda in Yele area [J]. J Nanjing Forestry Univ, 23(5): 27-31. 
    [9] Harris RB. 2004. Insights into population dynamics of giant pandas gained from studies in North America [J]. Acta Zool Sin, 50(4): 662-668. 
    [10] Hu JC. 2000. Review on the classification and population ecology of the giant panda [J]. Zool Res, 21(1): 28-34. 
    [11] Hu JC. 2001. Research on the Giant Panda [M]. Shanghai: Shanghai Scientific and Technologic Press.
    [12]  Huang Y, Zhang GQ, Zou XH. 2001. Demographic analyses of the captive population of giant panda [J]. J Northeast Forestry Univ, 29(2): 109-112. 
    [13] Ifeng. 2010. 64 reserves have been established in China. http://finance.ifeng.com/roll/20111025/4921200.shtml ZG. 1997. Conservation Biology 
    [M]. Zhejiang: Zhejiang Scientific and Technologic Press. [.Jiang
    [15] Lacy RC. 2000. Structure of the VORTEX simulation model for population viability analysis [J]. Ecol Bull, 48(48): 191-203. 
    [16] Li XH, Li DM, Lu BZ, Zhai T Q. 1996. Population viability analysis for the Crested ibis (Nipponia nippon) [J]. J Biodivesr Sci, 4(2): 69-77. 
    [17] Li XH, Li DM, Yong YG, Zhang J. 1997. A preliminary analysis on population viability analysis for giant panda in Foping [J]. Acta Zool Sin, 43(3): 285-293. 
    [18] Li YM. 2003. Population viability analysis in conservation biology: precision and uses [J]. J Biodivesr Sci, 11(4): 340-350. 
    [19] Li YM, Li DM. 1994. Advance in population viability analysis [J]. J Biodivesr Sci, 2(1): 1-10. 
    [20] Marris WE, Bloch PL, Hudgens BR, Moyle LC, Stinchcombe JR. 2002. Population viability analysis in endangered species recovery plans: past use and future improvements [J]. Ecol Appl, 12(3): 708-712. 
    [21] Pan WS, Lü Z. 1994. Population dynamic of Qinling’s giant panda: research on number, age, sex structure and internal distribution pattern [C]//Minutes of International Symposium on the Protection of the Giant Panda. 
    [22] Pan WS, Lü Z, Zhu XJ, Wang DJ. 2001. A Chance for Lasting Survival [M]. Beijing: Beijing University Press. 
    [23] Pulliam HR, Dunning JB, Liu JG. 1992. Population dynamics in complex landscapes: a case study [J]. Ecol Appl, 2(2): 165-177. 
    [24] Reed JM, Elphick CS, Oring LW. 1998. Life-history and viability analysis of the endangered Hawaiian stilt [J]. Biol Conserv, 84(1): 35-45. 
    [25] Ren WH, Yang G, Wei WF, Hu JC. 2002. A simulation model for population viability analysis of giant panda in Mabian Dafengding nature reserve [J]. Acta Zool Sin, 22(4): 264-269. 
    [26] Shaffer ML. 1990. Population viability analysis [J]. Conserv Biol, 4(1): 39-40. 
    [27] Song YL. 1996. Population viability analysis for two isolated populations of Hainan Eld’s deer [J]. Conserv Biol, 10(5): 1467-1472. 
    [28] Sohu. 2008. The first released giant panda from captivity died after releasing to wild with tumbling in China. Available at http://www.gov.cn/jrzg/2007-05/31/content_632380.htm. [Accessed 10 July 2010]
    [SFA] State Forestry Administration. 2006. The Third National Survey Report on Giant Panda in China [M]. Beijing: Chinese Science and Technology Publishing House.
    [30] Sun RY. 2001. Principles of Animal Ecology [M]. Beijing: Beijing Normal University Press. 
    [31] Wang H, Li SG, Pan WS. 2002. Population viability analysis of giant panda (Ailuropoda Melanoleuca) in Qinling Mountains [J]. Acta Sci Nat Univ Pekinensis: Nat Sci Ed, 38(6): 756-761.
    [32]  Wei FW, Hu JC. 1994a. Studies on the reproduction of giant panda in Wolong natural reserve [J]. Acta Zool Sin, 14(4): 243-248. 
    [33] Wei FW, Hu JC. 1994b. A preliminary analysis on population viability of giant pandas[C]//Minutes of the International Symposium in the Protection of the Giant Panda. Chengdu: Sichuan Publishing House of Science and Technology. 116-122. 
    [34] Wei FW, Hu JC, Xu GZ, Jiang MD, Deng QT, Zhong ZM. 1989. A study on the life table of wild giant pandas [J]. Acta Zool Sin, 9(2): 81-89. 
    [35] Xu HF, Lu HJ. 1996. A preliminary analysis of population viability for Chinese water deer (Hydropotes inermis) lived in Yancheng [J]. Acta Zool Sin, 16(2): 81-88. 
    [36] Yang ZS, Hu JC, Liu NF. 2007. The influence of dispersal on the metapopulation viability of Giant Panda (Aliuropoda melanoleuca) in the Minshan Mountain 
    [J]. Acta Zool Acad Sci Hung, 53(2): 169-184. 
    [38] Zhang XF, Wang KX. 1999. Population viability analysis for the Yangtze finless porpoise [J]. Acta Ecol Sin, 19(4): 529-533. 
    [39] Zhang ZJ, Hu JC. 2003. Population dynamics of the giant panda in the Daxiangling Mountains according to PVA [J]. J Sichuan Norm Coll: Nat Sci, 24(2): 141-144 
    [40] Zhang ZJ, Hu JC, Wu H, Hou WR. 2002. A analysis on population viability for giant panda in Tangjiahe [J]. Acta Ecol Sin, 22(7): 990-998. 
    [41] Zhu L, Wu PW, Zhang H, Hu JC. 2008. Population viability analysis of giant pandas in the Xiaoxiangling Mountains [J]. J Chn West Norm Univ: Nat Sci, 29(2): 112-116. 
    [42]  
    [43]
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(803) PDF downloads(2455) Cited by()

Related
Proportional views

Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca)

Funds:  This study was funded by the State Forestry Administration, China
  • Author Bio:

  • Corresponding author: Minghao GONG

Abstract: Population viability analysis (PVA) is a tool to evaluate the risk of extinction for endangered species and aid conservation decision-making. The quality of PVA output is dependent on parameters related to population dynamics and life-history; however, it has been difficult to collect this information for the giant panda (Aliuropoda melanoleuca), a rare and endangered mammal native to China, confined to some 30 fragmented habitat patches. Since giant pandas are long-lived, mature late, have lower reproductive rates, and show little sexual dimorphism, obtaining data to perform adequate PVA has been difficult. Here, we develop a parameter sensitivity index by modeling the dynamics of six giant panda populations in the Minshan Mountains, in order to determine the parameters most influential to giant panda populations. Our data shows that the giant panda populations are most sensitive to changes in four female parameters: initial breeding age, reproductive rate, mortality rate between age 0 and 1, and mortality rate of adults. The parameter sensitivity index strongly correlated with initial population size, as smaller populations were more sensitive to changes in these four variables. This model suggests that demographic parameters of females have more influence on the results of PVA, indicating that females may play a more important role in giant panda population dynamics than males. Consequently, reintroduction of female individuals to a small giant panda population should be a high priority for conservation efforts. Our findings form a technical basis for the coming program of giant panda reintroduction, and inform which parameters are crucial to successfully and feasibly monitoring wild giant panda populations.

Minghao GONG, Yanling SONG, Zhisong YANG, Chen LIN. Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca). Zoological Research, 2012, 33(E1-2): 18-24.
Citation: Minghao GONG, Yanling SONG, Zhisong YANG, Chen LIN. Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca). Zoological Research, 2012, 33(E1-2): 18-24.
Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return