留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Breast cancer animal models and applications

Li Zeng Wei Li Ce-Shi Chen

Li Zeng, Wei Li, Ce-Shi Chen. Breast cancer animal models and applications. Zoological Research, 2020, 41(5): 477-494. doi: 10.24272/j.issn.2095-8137.2020.095
Citation: Li Zeng, Wei Li, Ce-Shi Chen. Breast cancer animal models and applications. Zoological Research, 2020, 41(5): 477-494. doi: 10.24272/j.issn.2095-8137.2020.095

乳腺癌动物模型及应用

doi: 10.24272/j.issn.2095-8137.2020.095

Breast cancer animal models and applications

Funds: This study was supported in part by grants from the National Key R&D Program of China (2018YFC2000400), National Natural Science Foundation of China (81830087, U1602221, 31771516), and Project of Innovative Research Team of Yunnan Province (2019HC005)
More Information
  • 摘要: 乳腺癌是女性最常见的恶性肿瘤。乳腺癌基础和转化研究依赖于实验动物模型。理想的乳腺癌模型应与人类乳腺癌在肿瘤病因,生物学行为,病理学和对治疗的反应而言最好具有共性。根据构建模型的方法以及实验目的的不同,目前乳腺癌动物模型分为自发型、诱发型、移植型、基因工程型等,该篇综述介绍了不同乳腺癌实验动物模型研究的最新进展,并分析了它们的特征,优缺点和潜在应用。最后,我们指出了乳腺癌动物模型的未来研究方向。
  • Figure  1.  Biological approach to induce breast tumors

    A: RCAS-TVA system induces breast tumors in TVA transgenic mice under control of MMTV or WAP promoters. B: FU-CGW lentivirus system induces breast tumors in normal mice or tree shrews.

    Figure  2.  Transplanted breast cancer animal models

    A: Allograft breast cancer animal model: Mouse or rat-derived breast tumor cells are transplanted into the same genetic background animals. B: Cell line-derived xenotransplantation breast cancer animal model: human-derived breast cancer cell lines are transplanted into immunodeficient mice. C: PDX model of breast cancer: tumor tissues from human breast cancer patients are transplanted into immunodeficient mice.

    Table  1.   Summary of breast cancer animal models

    ModelMethodReferences
    SpontaneousNo treatmentRao et al., 1987
    InducedChemicalDMBA or MNUChan et al., 2007
    PhysicalRadiationRusso & Russo, 1996
    BiologicalLentivirus infectionBu et al., 2009; Fisher et al., 1999
    TransplantationHomeotransplantationSpontaneous or induced breast cancer cells transplanted into same strainPaschall & Liu, 2016
    HeterograftHuman breast cancer cells or patient tumor tissues transplanted into immunodeficient animalsBurdall et al., 2003
    Genetic engineering mouse modelTransgenicOncogene activationRashid & Takabe, 2015
    KnockoutTumor suppressor gene inactivationHutchinson, 2000
    下载: 导出CSV

    Table  2.   Common spontaneous mouse breast tumors

    StrainLatencyFrequencyPathologyReferences
    C3H6–10 monthsBreeding female mice: 95%; Virgin mice: 88%; Male mice: <1%ACHeston & Vlahakis, 1971; Machida et al., 2019
    ABreeding females: 80%–84%Strong, 1936
    DBA/2Female mice: 72%; Virgin mice: 48%; Male mice: 1%Szymanska et al., 2014
    BALB/c12 monthsFemale mice: 5%; Virgin mice: 1%ACHeston & Vlahakis, 1971; Machida et al., 2019
    SHN6.6–8.7 monthsBreeding rats: 97.2%; Virgin rats: 88.3%ACNagasawa et al., 1976
    TA2329.81±95.3 days84.1%Sun et al., 2008
    Kunming13.5 months25%IDCZheng et al., 2014
    AC: Adenocarcinoma; IDC: Invasive ductal carcinoma.
    下载: 导出CSV

    Table  3.   DMBA or MNU-induced mammary tumors in female rats

    StrainAge (d)CarcinogenDoseRoutePrimary tumorReferences
    Incidence (%)Latency
    SD47DMBA20 mg/kgig1008–13 wBarros et al., 2004
    50NMU50 mg/kgiv7386 dGullino et al., 1975
    NSDDMBA5 mg/animalip100Russo et al., 1990
    NMU50 mg/kgiv100Russo et al., 1990
    BUF/N50NMU50 mg/kgiv8977 dGullino et al., 1975
    F34450NMU50 mg/kgiv8994 dGullino et al., 1975
    SD: Sprague-Dawley; F344: Fischer 344; NSD: Inbred S-D; BUF/N: Buffalo; iv: Intravenous; ig: Intragastric; ip: Intraperitoneal injection; d: Day; w: Week.
    下载: 导出CSV

    Table  4.   Basic characteristics of commonly used mouse breast cancer cell lines

    Cell lineOriginLatencyPathologyMetastasisTransfer siteReferences
    4T167NRBALB/C8–17 dLuminalYesLungJohnstone et al., 2015
    4T1.2BasalNo
    TM40DBALB/C1 wYesLungShi et al., 2001
    D2A1BALB/c14–18 dYesLung, heartMorris et al., 1993
    EMT6BALB/c3–5 dYesLungDuan et al., 2013; Rockwell et al., 1972
    E0771C57BL/6BasalYesLungJohnstone et al., 2015
    MVT1FVB/NLuminalYesLungPei et al., 2004
    6DT1FVB/NLuminalYang et al., 2017
    M6FVB/N44 dLuminalYesLungHolzer et al., 2003
    CSTFVB/N20 dBasalHámori et al., 2020
    EACOutbredYesLung, liver, heart, boneMishra et al., 2018; Ozaslan et al., 2011
    d: Day; w: Week.
    下载: 导出CSV

    Table  5.   Characteristics of commonly used human breast cancer cell lines

    NameOriginSubtypePathologyTransplant siteNumber of tumor cellsMouse strainLatencyMetastasisMetastasis siteReferences
    BT20BreastBasalIDCSubcutaneous6.25×106Nude mice3 wNoOzzello et al., 1974
    BT474BreastLuminal BIDCLeft ventricle1×106Nude miceYesBoneLu et al., 2009; Neve et al., 2006
    MCF-7Pleural effusionLuminal AIDCMammary gland fat pad1×106Ovariectomized female athymic nude miceb1 wYesLymph nodes, lymph vesselsHarrell et al., 2006
    MDA-MB-231Pleural effusionBasalACTail vein2×105Immunodeficient mice8–15 wYesLung, liverBos et al., 2009; Cailleau et al., 1974; Minn et al., 2005;
    Mammary gland fat pad0.5~1×1065–9 wLung, liver, brain
    Left ventricle0.1~1×1054 wBrain, bone
    MDA-MB-453Pleural effusionHER2+ACMammary gland fat pad1×105NOD/SCID4 wYesBoneCharafe-Jauffret et al., 2009; Neve et al., 2006
    MDA-MB-435Pleural effusionBasalIDCMammary gland fat pad5×106NCr-nu/nu nude miceYesLungLiby et al., 2003
    MDA-MB-361BreastLuminal BACNeve et al., 2006
    MDA-MB-468Pleural effusionBasalACNeve et al., 2006
    SUM149BreastBasalDCMammary gland fat padNOD/SCID(6–8 w)aYesLungKuperwasser et al., 2005
    SUM185Pleural effusionLuminal ADCNeve et al., 2006
    SUM190BreastBasalCMammary gland fat padNOD/SCID(6–8 w)aKuperwasser et al., 2005
    SUM1315SkinBasalIDCMammary gland fat padNOD/SCID(8–12 w)aYesLung, boneKuperwasser et al., 2005
    SUM52Pleural effusionLuminalCEthier et al., 1996
    T47DcPleural effusionLuminal AIDCMammary gland fat pad1×106NOD/SCIDCerliani et al., 2011
    SKBR3Pleural effusionHER2+ACTrempe, 1976
    ZR-75-1AscitesLuminal BIDCEngel et al., 1978
    HCC1806 BasalSubcutaneously1.7×106Nude mice5 dWang et al., 2015
    HCC1937BreastBasalDCMammary gland5×106NOD/SCID10 dJia et al., 2016; Neve et al., 2006
    AC: Adenocarcinoma; IDC: Invasive ductal carcinoma; C: Carcinoma; DC: Ductal carcinoma; a: Incubation period required for tumor to grow to about 1 cm; b: Mice were implanted with silastic pellets containing cellulose (10 mg) or 17 h-estradiol (2 mg+8 mg cellulose); c: T47D cells stably transfected with constitutively active fibroblast growth factor 2; d: Day; w: Week; m: Month.
    下载: 导出CSV

    Table  6.   Basic situation of common breast cancer transgenic mouse models

    PromoterTransgenePrimary tumorMetastasisPathologyReferences
    LatencyIncidence (%)Incidence (%)LatencyMetastatic site
    MMTV-LTRTGFα6–13 m40ACHalter et al., 1992; Matsui et al., 1990
    Wild-type-ErbB-2 (HER2,Neu)7 m100728 mLungACGuy et al., 1992b
    H-ras5 w–6 mACSinn et al., 1987
    c-rel19.9 m31.6LungACRomieu-Mourez et al., 2003
    PyMT4–8 w10084–9014 wLymph node, lungIDCAlmholt et al., 2005
    c-Myc4–8 mACStewart et al., 1984
    Cyclin D122 m40Wang et al., 1994
    Wnt-16 m50Lymph node, lungACLi et al., 2000; Tsukamoto et al., 1988
    WAPTGFα6–12 m100ACRose-Hellekant & Sandgren, 2000b; Sandgren et al., 1995
    Ras24 w10014LungACNielsen et al., 1991
    c-Myc5–10 m10020LungACRose-Hellekant & Sandgren, 2000a
    SV408–9 mACLi et al., 1996; Santarelli et al., 1996
    C(3)1SV4016 w10015LungIDCGreen et al., 2000
    AC: Adenocarcinoma; IDC: Invasive ductal carcinoma; d: Day; w: Week; m: Month.
    下载: 导出CSV

    Table  7.   Breast cancer animal models for drug research and development

    Breast Cancer TypingTherapyDrugModelReferences
    Hormone receptor positive breast cancer (HR+) (ERα+/PR+HER2-)AntiestrogensTamoxifenCDX model (MCF-7)Osborne et al., 1985
    FulvestrantCDX model (MCF-7)Lee et al., 1995
    Aromatase inhibitorLetrozoleCDX model (MCF-7)Brodie et al., 1998; Wakeling et al., 1991
    AnastrozoleCDX model (MCF-7)Brodie et al., 1998
    CDK4 / 6 inhibitorPalbociclibCDX model (MDA-MB-435, ZR-75-1)Fry et al., 2004
    RibociclibCDX model (MDA-MB-435)Vora et al., 2014
    AbemaciclibCDX model (MDA-MB-231)Knudsen et al., 2017
    HER2-positive breast cancer (ERα-PR-HER2+)Monoclonal antibodiesTrastuzumabCDX model (BT474)Baselga et al., 1998
    Epidermal growth factor tyrosine kinase inhibitorLapatinibCDX model (BT474)Rusnak et al., 2001
    Triple negative breast cancer (ERα-PR-HER2-)Chemotherapy drugsCisplatinGEMM (Brca1 mutant breast cancer mice)Shafee et al., 2008
    ADP ribose polymerase (PARP) inhibitorsOlaparibGEMM (BRCA1Co/Co - MMTV-Cre-p53+/− mice)To et al., 2014
    PD-L1 positive patientsImmune checkpoint inhibitorPembrolizumabHu-PDX modelWang et al., 2018
    下载: 导出CSV
  • [1] Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. 2014. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5): 1110−1122. doi:  10.1016/j.cell.2014.07.013
    [2] Allred DC, Clark GM, Molina R, Tandon AK, Schnitt SJ, Gilchrist KW, et al. 1992. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Human Pathology, 23(9): 974−979. doi:  10.1016/0046-8177(92)90257-4
    [3] Almholt K, Lund LR, Rygaard J, Nielsen BS, Danø K, Rømer J, et al. 2005. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. International Journal of Cancer, 113(4): 525−532. doi:  10.1002/ijc.20631
    [4] Amundadottir LT, Johnson MD, Merlino G, Smith GH, Dickson RB. 1995. Synergistic interaction of transforming growth factor α and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 6(6): 737−748.
    [5] Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. 2017. Breast cancer in young women: an overview. Updates in Surgery, 69(3): 313−317. doi:  10.1007/s13304-017-0424-1
    [6] Aslakson CJ, Miller FR. 1992. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research, 52(6): 1399−1405.
    [7] Bagheri-Yarmand R, Kourbali Y, Rath AM, Vassy R, Martin A, Jozefonvicz J, et al. 1999. Carboxymethyl benzylamide dextran blocks angiogenesis of MDA-MB435 breast carcinoma xenografted in fat pad and its lung metastases in nude mice. Cancer Research, 59(3): 507−510.
    [8] Barros ACSD, Muranaka ENK, Mori LJ, Pelizon CHT, Iriya K, Giocondo G, et al. 2004. Induction of experimental mammary carcinogenesis in rats with 7, 12-dimethylbenz(a)anthracene. Revista do Hospital das Clínicas, 59(5): 257−261. doi:  10.1590/S0041-87812004000500006
    [9] Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. 1998. Recombinant humanized anti-HER2 antibody (HerceptinTM) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Research, 58(13): 2825−2831.
    [10] Borowsky AD. 2011. Choosing a mouse model: experimental biology in context--the utility and limitations of mouse models of breast cancer. Cold Spring Harbor Perspectives in Biology, 3(9): a009670.
    [11] Bos PD, Zhang XHF, Nadal C, Shu WP, Gomis RR, Nguyen DX, et al. 2009. Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249): 1005−1009. doi:  10.1038/nature08021
    [12] Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. 1989. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell, 57(6): 931−936. doi:  10.1016/0092-8674(89)90331-0
    [13] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6): 394−424. doi:  10.3322/caac.21492
    [14] Brodie A, Lu Q, Liu Y, Long B, Wang JP, Yue W. 1998. Preclinical studies using the intratumoral aromatase model for postmenopausal breast cancer. Oncology (Williston Park, N.Y.), 12(3 Suppl 5): 36−40.
    [15] Broerse JJ, Hennen LA, van Zwieten MJ. 1985. Radiation carcinogenesis in experimental animals and its implications for radiation protection. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 48(2): 167−187. doi:  10.1080/09553008514551171
    [16] Bu W, Xin L, Toneff M, Li L, Li Y. 2009. Lentivirus vectors for stably introducing genes into mammary epithelial cells in vivo. Journal of Mammary Gland Biology and Neoplasia, 14(4): 401−404. doi:  10.1007/s10911-009-9154-4
    [17] Burdall SE, Hanby AM, Lansdown MRJ, Speirs V. 2003. Breast cancer cell lines: friend or foe?. Breast Cancer Research, 5(2): 89−95. doi:  10.1186/bcr577
    [18] Cailleau R, Young R, Olivé M, Reeves WJ Jr. 1974. Breast tumor cell lines from pleural effusions. NCI: Journal of the National Cancer Institute, 53(3): 661−674. doi:  10.1093/jnci/53.3.661
    [19] Cardiff RD, Kenney N. 2011. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice. Cold Spring Harbor Perspectives in Biology, 3(6): a003111.
    [20] Cerliani JP, Guillardoy T, Giulianelli S, Vaque JP, Gutkind JS, Vanzulli SI, et al. 2011. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer. Cancer Research, 71(10): 3720−3731. doi:  10.1158/0008-5472.CAN-10-3074
    [21] Chakrabarti R, Kang YB. 2015. Transplantable mouse tumor models of breast cancer metastasis. In: Eferl R, Casanova E. Mouse Models of Cancer: Methods and Protocols. New York, NY: Humana Press, 367–380.
    [22] Chan MM, Lu X, Merchant FM, Iglehart JD, Miron PL. 2007. Serial transplantation of NMU-induced rat mammary tumors: a model of human breast cancer progression. International Journal of Cancer, 121(3): 474−485. doi:  10.1002/ijc.22684
    [23] Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. 2009. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Research, 69(4): 1302−1313. doi:  10.1158/0008-5472.CAN-08-2741
    [24] Chen MJ, Ou C, Yang C, Yang WP, Qin QH, Jiang W, et al. 2019. A novel animal model of induced breast precancerous lesion in tree shrew. Biological and Pharmaceutical Bulletin, 42(4): 580−585. doi:  10.1248/bpb.b18-00688
    [25] Cho SY, Kang W, Han JY, Min S, Kang J, Lee A, et al. 2016. An integrative approach to precision cancer medicine using patient-derived Xenografts. Molecules and Cells, 39(2): 77−86. doi:  10.14348/molcells.2016.2350
    [26] Chow LWC, Cheung MNB, Loo WTY, Guan XY. 2003. A rat cell line derived from DMBA-induced mammary carcinoma. Life Sciences, 73(1): 27−40. doi:  10.1016/S0024-3205(03)00253-4
    [27] Clarke AR. 2000. Manipulating the germline: its impact on the study of carcinogenesis. Carcinogenesis, 21(3): 435−441. doi:  10.1093/carcin/21.3.435
    [28] Clarke R. 2009. The role of preclinical animal models in breast cancer drug development. Breast Cancer Research, 11(Suppl 3): S22.
    [29] Davies BR, Platt-Higgins AM, Schmidt G, Rudland PS. 1999. Development of hyperplasias, preneoplasias, and mammary tumors in MMTV-c-erbB-2 and MMTV-TGFα transgenic rats. The American Journal of Pathology, 155(1): 303−314. doi:  10.1016/S0002-9440(10)65124-3
    [30] DeRose YS, Wang GY, Lin YC, Bernard PS, Buys SS, Ebbert MTW, et al. 2011. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11): 1514−1520. doi:  10.1038/nm.2454
    [31] Ding Q, Gan L. 2012. Conditional control of gene expression in the mouse retina. In: Wang SZ. Retinal Development: Methods and Protocols. Totowa, NJ: Humana Press, 3–15.
    [32] Dong J, Zhao W, Shi A, Toneff M, Lydon J, So D, et al. 2016. The PR status of the originating cell of ER/PR-negative mouse mammary tumors. Oncogene, 35(31): 4149−4154. doi:  10.1038/onc.2015.465
    [33] Dow LE. 2015. Modeling disease in vivo with CRISPR/Cas9. Trends in Molecular Medicine, 21(10): 609−621. doi:  10.1016/j.molmed.2015.07.006
    [34] Du ZJ, Li Y. 2007. RCAS-TVA in the mammary gland: an in vivo oncogene screen and a high fidelity model for breast transformation?. Cell Cycle, 6(7): 823−826. doi:  10.4161/cc.6.7.4074
    [35] Du ZJ, Podsypanina K, Huang SX, McGrath A, Toneff MJ, Bogoslovskaia E, et al. 2006. Introduction of oncogenes into mammary glands in vivowith an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 103(46): 17396−17401. doi:  10.1073/pnas.0608607103
    [36] Duan QW, Liu YF, Rockwell S. 2013. Fenbendazole as a potential anticancer drug. Anticancer Research, 33(2): 355−362.
    [37] Duarte AA, Gogola E, Sachs N, Barazas M, Annunziato S, de Ruiter JR, et al. 2018. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nature Methods, 15(2): 134−140. doi:  10.1038/nmeth.4535
    [38] Elliot OS, Elliot MW, Lisco H. 1966. Breast cancer in a tree shrew (Tupaia glis). Nature, 211(5053): 1105. doi:  10.1038/2111105a0
    [39] Engel LW, Young NA, Tralka TS, Lippman ME, O'Brien SJ, Joyce MJ. 1978. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Research, 38(10): 3352−3364.
    [40] Erin N, Kale Ş, Tanrıöver G, Köksoy S, Duymuş Ö, Korcum AF. 2013. Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Research and Treatment, 139(3): 677−689. doi:  10.1007/s10549-013-2584-0
    [41] Ethier SP, Kokeny KE, Ridings JW, Dilts CA. 1996. erbB family receptor expression and growth regulation in a newly isolated human breast cancer cell line. Cancer Research, 56(4): 899−907.
    [42] Fabris VT. 2014. From chromosomal abnormalities to the identification of target genes in mouse models of breast cancer. Cancer Genetics, 207(6): 233−246. doi:  10.1016/j.cancergen.2014.06.025
    [43] Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. 2013. Genome of the Chinese tree shrew. Nature Communications, 4(1): 1426. doi:  10.1038/ncomms2416
    [44] Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, et al. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi:  10.24272/j.issn.2095-8137.2019.063
    [45] Fantozzi A, Christofori G. 2006. Mouse models of breast cancer metastasis. Breast Cancer Research, 8(4): 212. doi:  10.1186/bcr1530
    [46] Fidler MM, Gupta S, Soerjomataram I, Ferlay J, Steliarova-Foucher E, Bray F. 2017. Cancer incidence and mortality among young adults aged 20–39 years worldwide in 2012: a population-based study. The Lancet Oncology, 18(12): 1579−1589. doi:  10.1016/S1470-2045(17)30677-0
    [47] Fisher GH, Orsulic S, Holland E, Hively WP, Li Y, Lewis BC, et al. 1999. Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene, 18(38): 5253−5260. doi:  10.1038/sj.onc.1203087
    [48] Flynn R, Grundmann A, Renz P, Hänseler W, James WS, Cowley SA, et al. 2015. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Experimental Hematology, 43(10): 838−848. doi:  10.1016/j.exphem.2015.06.002
    [49] Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. 2004. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Molecular Cancer Therapeutics, 3(11): 1427−1438.
    [50] Füredi A, Szebényi K, Tóth S, Cserepes M, Hámori L, Nagy V, et al. 2017a. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer. Journal of Controlled Release, 261: 287−296. doi:  10.1016/j.jconrel.2017.07.010
    [51] Füredi A, Tóth S, Szebényi K, Pape VFS, Türk D, Kucsma N, et al. 2017b. Identification and validation of compounds selectively killing resistant cancer: delineating cell line-specific effects from p-glycoprotein-induced toxicity. Molecular Cancer Therapeutics, 16(1): 45−56. doi:  10.1158/1535-7163.MCT-16-0333-T
    [52] Ge GZ, Xia HJ, He BL, Zhang HL, Liu WJ, Shao M, et al. 2016. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution. International Journal of Cancer, 138(3): 642−651. doi:  10.1002/ijc.29814
    [53] Gheorghescu AK, Tywoniuk B, Duess J, Buchete NV, Thompson J. 2015. Exposure of chick embryos to cadmium changes the extra-embryonic vascular branching pattern and alters expression of VEGF-A and VEGF-R2. Toxicology and Applied Pharmacology, 289(1): 79−88. doi:  10.1016/j.taap.2015.09.004
    [54] Goddard ET, Fischer J, Schedin P. 2016. A portal vein injection model to study liver metastasis of breast cancer. Journal of Visualized Experiments, (118): 54903.
    [55] Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, et al. 2018. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell, 33(6): 1078−1093. doi:  10.1016/j.ccell.2018.05.008
    [56] Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, et al. 2000. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene, 19(8): 1020−1027. doi:  10.1038/sj.onc.1203280
    [57] Gullino PM, Pettigrew HM, Grantham FH. 1975. N-nitrosomethylurea as mammary gland carcinogen in rats. Journal of the National Cancer Institute, 54(2): 401−414.
    [58] Guy CT, Cardiff RD, Muller WJ. 1992a. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12(3): 954−961. doi:  10.1128/MCB.12.3.954
    [59] Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. 1992b. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proceedings of the National Academy of Sciences of the United States of America, 89(22): 10578−10582. doi:  10.1073/pnas.89.22.10578
    [60] Halter SA, Dempsey P, Matsui Y, Stokes MK, Graves-Deal R, Hogan BL, et al. 1992. Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-α. Characterization of mammary gland and skin proliferations. The American Journal of Pathology, 140(5): 1131−1146.
    [61] Hámori L, Kudlik G, Szebényi K, Kucsma N, Szeder B, Póti Á, et al. 2020. Establishment and characterization of a Brca1-/-, p53-/- mouse mammary tumor cell line. International Journal of Molecular Sciences, 21(4): 1185. doi:  10.3390/ijms21041185
    [62] Hanahan D, Wagner EF, Palmiter RD. 2007. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes & Development, 21(18): 2258−2270.
    [63] Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA, et al. 2006. Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Research, 66(18): 9308−9315. doi:  10.1158/0008-5472.CAN-06-1769
    [64] Heston WE, Vlahakis G. 1971. Mammary tumors, plaques, and hyperplastic alveolar nodules in various combinations of mouse inbred strains and the different lines of the mammary tumor virus. International Journal of Cancer, 7(1): 141−148. doi:  10.1002/ijc.2910070116
    [65] Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. 2014. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery, 4(9): 998−1013. doi:  10.1158/2159-8290.CD-14-0001
    [66] Hoffman RM. 1999. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investigational New Drugs, 17(4): 343−359. doi:  10.1023/A:1006326203858
    [67] Holen I, Speirs V, Morrissey B, Blyth K. 2017. In vivo models in breast cancer research: progress, challenges and future directions. Disease Models & Mechanisms, 10(4): 359−371.
    [68] Holliday DL, Speirs V. 2011. Choosing the right cell line for breast cancer research. Breast Cancer Research, 13(4): 215. doi:  10.1186/bcr2889
    [69] Holzer RG, MacDougall C, Cortright G, Atwood K, Green JE, Jorcyk CL. 2003. Development and characterization of a progressive series of mammary adenocarcinoma cell lines derived from the C3(1)/SV40 Large T-antigen transgenic mouse model. Breast Cancer Research and Treatment, 77(1): 65−76. doi:  10.1023/A:1021175931177
    [70] Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Subler MA, Windle JJ. 1997. Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Molecular and Cellular Biology, 17(2): 723−731. doi:  10.1128/MCB.17.2.723
    [71] Hutchinson JN, Muller MJ. 2000. Transgenic mouse models of human breast cancer. Oncogene, 19(53): 6130−6137. doi:  10.1038/sj.onc.1203970
    [72] Jagadeeshan S, Sagayaraj RV, Paneerselvan N, Ghouse SS, Malathi R. 2017. Toxicity and anti-angiogenicity evaluation of Pak1 inhibitor IPA-3 using zebrafish embryo model. Cell Biology and Toxicology, 33(1): 41−56. doi:  10.1007/s10565-016-9358-5
    [73] Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, et al. 2013. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discovery, 3(1): 68−81. doi:  10.1158/2159-8290.CD-12-0049
    [74] Jia L, Zhou Z, Liang H, Wu J, Shi P, Li F, et al. 2016. KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene, 35(16): 2040−2051. doi:  10.1038/onc.2015.263
    [75] Jiang M, Xu XY, Bi YL, Xu JY, Qin CY, Han MY. 2014. Systemic inflammation promotes lung metastasis via E-selectin upregulation in mouse breast cancer model. Cancer Biology & Therapy, 15(6): 789−796.
    [76] Johnstone CN, Smith YE, Cao Y, Burrows AD, Cross RSN, Ling XW, et al. 2015. Functional and molecular characterisation of EO771. LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Disease Models & Mechanisms, 8(3): 237−251.
    [77] Jonkers J, Derksen PWB. 2007. Modeling metastatic breast cancer in mice. Journal of Mammary Gland Biology and Neoplasia, 12(2–3): 191−203.
    [78] Kaya P, Lee SR, Lee YH, Kwon SW, Yang H, Lee HW, et al. 2019. Curcumae radix extract decreases mammary tumor-derived lung metastasis via suppression of C-C chemokine receptor type 7 Expression. Nutrients, 11(2): 410. doi:  10.3390/nu11020410
    [79] Keegan NM, Gleeson JP, Hennessy BT, Morris PG. 2018. PI3K inhibition to overcome endocrine resistance in breast cancer. Expert Opinion on Investigational Drugs, 27(1): 1−15. doi:  10.1080/13543784.2018.1417384
    [80] Kij A, Kus K, Smeda M, Zakrzewska A, Proniewski B, Matyjaszczyk K, et al. 2018. Differential effects of nitric oxide deficiency on primary tumour growth, pulmonary metastasis and prostacyclin/thromboxane A2 balance in orthotopic and intravenous murine models of 4T1 breast cancer. Journal of Physiology and Pharmacology, 69(6): 911−919.
    [81] Kim H, Kim M, Im SK, Fang S. 2018. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Laboratory Animal Research, 34(4): 147−159. doi:  10.5625/lar.2018.34.4.147
    [82] Kim IS, Baek SH. 2010. Mouse models for breast cancer metastasis. Biochemical and Biophysical Research Communications, 394(3): 443−447. doi:  10.1016/j.bbrc.2010.03.070
    [83] Kim LS, Huang S, Lu WX, Lev DC, Price JE. 2004. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clinical & Experimental Metastasis, 21(2): 107−118.
    [84] Knudsen ES, Hutcheson J, Vail P, Witkiewicz AK. 2017. Biological specificity of CDK4/6 inhibitors: dose response relationship, in vivo signaling, and composite response signature. Oncotarget, 8(27): 43678−43691. doi:  10.18632/oncotarget.18435
    [85] Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al. 2012. Comprehensive molecular portraits of human breast tumours. Nature, 490(7418): 61−70. doi:  10.1038/nature11412
    [86] Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, et al. 2005. A mouse model of human breast cancer metastasis to human bone. Cancer Research, 65(14): 6130−6138. doi:  10.1158/0008-5472.CAN-04-1408
    [87] Kusuma N, Denoyer D, Eble JA, Redvers RP, Parker BS, Pelzer R, et al. 2012. Integrin-dependent response to laminin-511 regulates breast tumor cell invasion and metastasis. International Journal of Cancer, 130(3): 555−566. doi:  10.1002/ijc.26018
    [88] Lacroix M, Leclercq G. 2004. Relevance of breast cancer cell lines as models for breast Tumours: an update. Breast Cancer Research and Treatment, 83(3): 249−289. doi:  10.1023/B:BREA.0000014042.54925.cc
    [89] Lanari C, Molinolo AA, Pasqualini CD. 1986. Induction of mammary adenocarcinomas by medroxyprogesterone acetate in BALB/c female mice. Cancer Letters, 33(2): 215−23. doi:  10.1016/0304-3835(86)90027-3
    [90] Lebert JM, Lester R, Powell E, Seal M, McCarthy J. 2018. Advances in the systemic treatment of triple-negative breast cancer. Current Oncology, 25(Suppl 1): S142−S150.
    [91] Lee JH, Kim B, Jin WJ, Kim JW, Kim HK, Ha H, et al. 2014. Trolox inhibits osteolytic bone metastasis of breast cancer through both PGE2-dependent and independent mechanisms. Biochemical Pharmacology, 91(1): 51−60. doi:  10.1016/j.bcp.2014.06.005
    [92] Lee K, Macaulay VM, Nicholls JE, Detre S, Ashworth A, Dowsett M. 1995. An in vivo model of intratumoural aromatase using aromatase-transfected MCF7 human breast cancer cells. International Journal of Cancer, 62(3): 297−302. doi:  10.1002/ijc.2910620311
    [93] Li B, Rosen JM, McMenamin-Balano J, Muller WJ, Perkins AS. 1997. neu/ERBB2 cooperates with p53172H during mammary tumorigenesis in transgenic mice. Molecular and Cellular Biology, 17(6): 3155−3163. doi:  10.1128/MCB.17.6.3155
    [94] Li ML, Hu JD, Heermeier K, Hennighausen L, Furth PA. 1996. Expression of a viral oncoprotein during mammary gland development alters cell fate and function: induction of p53-independent apoptosis is followed by impaired milk protein production in surviving cells. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 7(1): 3−11.
    [95] Li W, Teng F, Li TD, Zhou Q. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 31(8): 684−686. doi:  10.1038/nbt.2652
    [96] Li Y, Hively WP, Varmus HE. 2000. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene, 19(8): 1002−1009. doi:  10.1038/sj.onc.1203273
    [97] Liby K, Neltner B, Mohamet L, Menchen L, Ben-Jonathan N. 2003. Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth. Breast Cancer Research and Treatment, 79(2): 241−252. doi:  10.1023/A:1023956223037
    [98] Lin EY, Jones JG, Li P, Zhu LY, Whitney KD, Muller WJ, et al. 2003. Progression to malignancy in the Polyoma middle T Oncoprotein mouse breast cancer model provides a reliable model for human diseases. The American Journal of Pathology, 163(5): 2113−2126. doi:  10.1016/S0002-9440(10)63568-7
    [99] Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian YZ, Palmieri D, et al. 2012. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer, 12(1): 583. doi:  10.1186/1471-2407-12-583
    [100] Liu PX, Cheng HL, Santiago S, Raeder M, Zhang F, Isabella A, et al. 2011. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nature Medicine, 17(9): 1116−1120. doi:  10.1038/nm.2402
    [101] Liu R, Shi PG, Zhou ZM, Zhang HL, Li W, Zhang H, et al. 2018. Krüpple-like factor 5 is essential for mammary gland development and tumorigenesis. The Journal of Pathology, 246(4): 497−507. doi:  10.1002/path.5153
    [102] Liu XL, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, et al. 2007. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(29): 12111−12116. doi:  10.1073/pnas.0702969104
    [103] Lu X, Wang QQ, Hu GH, Van Poznak C, Fleisher M, Reiss M, et al. 2009. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes & Development, 23(16): 1882−1894.
    [104] Luque-Cabal M, Garcia-Teijido P, Fernández-Pérez Y, Sánchez-Lorenzo L, Palacio-Vázquez I. 2016. Mechanisms behind the resistance to Trastuzumab in HER2-amplified breast cancer and strategies to overcome it. Clinical Medicine Insights: Oncology, 10(Suppl 1): 21−30.
    [105] Machida Y, Sudo Y, Uchiya N, Imai T. 2019. Increased susceptibility to mammary carcinogenesis and an opposite trend in endometrium in Trp53 heterozygous knockout female mice by backcrossing the BALB/c strain onto the background C3H strain. Journal of Toxicologic Pathology, 32(3): 197−203. doi:  10.1293/tox.2018-0057
    [106] Maroulakou IG, Anver M, Garrett L, Green JE. 1994. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proceedings of the National Academy of Sciences of the United States of America, 91(23): 11236−11240. doi:  10.1073/pnas.91.23.11236
    [107] Matsui Y, Halter SA, Holt JT, Hogan BLM, Coffey RJ. 1990. Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell, 61(6): 1147−1155. doi:  10.1016/0092-8674(90)90077-R
    [108] McLellan MA, Rosenthal NA, Pinto AR. 2017. Cre-loxP-mediated recombination: general principles and experimental considerations. Current Protocols in Mouse Biology, 7(1): 1−12. doi:  10.1002/cpmo.22
    [109] Meraz IM, Majidi M, Meng F, Shao RP, Ha MJ, Neri S, et al. 2019. An improved patient-derived Xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunology Research, 7(8): 1267−1279. doi:  10.1158/2326-6066.CIR-18-0874
    [110] Mercatali L, La Manna F, Groenewoud A, Casadei R, Recine F, Miserocchi G, et al. 2016. Development of a Patient-Derived Xenograft (PDX) of breast cancer bone metastasis in a Zebrafish model. International Journal of Molecular Sciences, 17(8): 1375. doi:  10.3390/ijms17081375
    [111] Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu WP, Giri DD, et al. 2005. Genes that mediate breast cancer metastasis to lung. Nature, 436(7050): 518−524. doi:  10.1038/nature03799
    [112] Minn AJ, Kang YB, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. 2005. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. The Journal of Clinical Investigation, 115(1): 44−55. doi:  10.1172/JCI22320
    [113] Mishra S, Tamta AK, Sarikhani M, Desingu PA, Kizkekra SM, Pandit AS, et al. 2018. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Scientific Reports, 8(1): 5599. doi:  10.1038/s41598-018-23669-9
    [114] Mollard S, Mousseau Y, Baaj Y, Richard L, Cook-Moreau J, Monteil J, et al. 2011. How can grafted breast cancer models be optimized?. Cancer Biology & Therapy, 12(10): 855−864.
    [115] Morris VL, Tuck AB, Wilson SM, Percy D, Chambers AF. 1993. Tumor progression and metastasis in murine D2 hyperplastic alveolar nodule mammary tumor cell lines. Clinical & Experimental Metastasis, 11(1): 103−112.
    [116] Mottolese M, Morelli L, Agrimi U, Benevolo M, Sciarretta F, Antonucci G, et al. 1994. Spontaneous canine mammary tumors. A model for monoclonal antibody diagnosis and treatment of human breast cancer. Laboratory Investigation; A Journal of Technical Methods and Pathology, 71(2): 182−187.
    [117] Mukherjee A, Soyal SM, Wheeler DA, Fernandez-Valdivia R, Nguyen J, DeMayo FJ, et al. 2006. Targeting iCre expression to murine progesterone receptor cell-lineages using bacterial artificial chromosome transgenesis. Genesis, 44(12): 601−610. doi:  10.1002/dvg.20257
    [118] Nagasawa H, Yanai R, Taniguchi H, Tokuzen R, Nakahara W. 1976. Two-way selection of a stock of Swiss albino mice for mammary tumorigenesis: establishment of two new strains (SHN and SLN). JNCI: Journal of the National Cancer Institute, 57(2): 425−430. doi:  10.1093/jnci/57.2.425
    [119] Nagy A. 2000. Cre recombinase: the universal reagent for genome tailoring. Genesis, 26(2): 99−109. doi:  10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B
    [120] Nakanishi H, Taylor RM, Chrest FJ, Masui T, Utsumi K, Tatematsu M, et al. 1995. Progression of hormone-dependent adenocarcinoma cells to hormone-independent spindle carcinoma cells in vitro in a clonal spontaneous rat mammary tumor cell line. Cancer Research, 55(2): 399−407.
    [121] Neal JT, Li XN, Zhu JJ, Giangarra V, Grzeskowiak CL, Ju JH, et al. 2018. Organoid modeling of the tumor immune microenvironment. Cell, 175(7): 1972−1988. doi:  10.1016/j.cell.2018.11.021
    [122] Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10(6): 515−527. doi:  10.1016/j.ccr.2006.10.008
    [123] Nielsen LL, Discafani CM, Gurnani M, Tyler RD. 1991. Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Research, 51(14): 3762−3767.
    [124] Nohmi T, Masumura K, Toyoda-Hokaiwado N. 2017. Transgenic rat models for mutagenesis and carcinogenesis. Genes and Environment, 39(1): 11. doi:  10.1186/s41021-016-0072-6
    [125] Nutter F, Holen I, Brown HK, Cross SS, Evans CA, Walker M, et al. 2014. Different molecular profiles are associated with breast cancer cell homing compared with colonisation of bone: evidence using a novel bone-seeking cell line. Endocrine-Related Cancer, 21(2): 327−341. doi:  10.1530/ERC-13-0158
    [126] Osborne CK, Hobbs K, Clark GM. 1985. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Research, 45(2): 584−590.
    [127] Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, et al. 2014. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clinical Cancer Research, 20(11): 2922−2932. doi:  10.1158/1078-0432.CCR-13-1246
    [128] Ozaslan M, Karagoz ID, Kilic IH, Guldur ME. 2011. Ehrlich ascites carcinoma. African Journal of Biotechnology, 10(13): 2375−2378.
    [129] Ozzello L, Sordat B, Merenda C, Carrel S, Hurlimann J, Mach JP. 1974. Transplantation of a human mammary carcinoma cell line (BT 20) into nude mice2. JNCI: Journal of the National Cancer Institute, 52(5): 1669−1672. doi:  10.1093/jnci/52.5.1669
    [130] Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ. 2013. Breast cancer: current and future endocrine therapies. Molecular and Cellular Endocrinology, 382(1): 695−723.
    [131] Park JW, Neve RM, Szollosi J, Benz CC. 2008. Unraveling the biologic and clinical complexities of HER2. Clinical Breast Cancer, 8(5): 392−401. doi:  10.3816/CBC.2008.n.047
    [132] Park MK, Lee CH, Lee H. 2018. Mouse models of breast cancer in preclinical research. Laboratory Animal Research, 34(4): 160−165. doi:  10.5625/lar.2018.34.4.160
    [133] Paschall AV, Liu KB. 2016. An orthotopic mouse model of spontaneous breast cancer metastasis. Journal of Visualized Experiments, (114): 54040.
    [134] Pattengale PK, Stewart TA, Leder A, Sinn E, Muller W, Tepler I, et al. 1989. Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. The American Journal of Pathology, 135(1): 39−61.
    [135] Pei XF, Noble MS, Davoli MA, Rosfjord E, Tilli MT, Furth PA, et al. 2004. Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cellular & Developmental Biology - Animal, 40(1–2): 14−21.
    [136] Peña L, Perez-Alenza MD, Rodriguez-Bertos A, Nieto A. 2003. Canine inflammatory mammary carcinoma: histopathology, immunohistochemistry and clinical implications of 21 cases. Breast Cancer Research and Treatment, 78(2): 141−148. doi:  10.1023/A:1022991802116
    [137] Pillai SG, Li SQ, Siddappa CM, Ellis MJ, Watson MA, Aft R. 2018. Identifying biomarkers of breast cancer micrometastatic disease in bone marrow using a patient-derived xenograft mouse model. Breast Cancer Research, 20(1): 2. doi:  10.1186/s13058-017-0927-1
    [138] Price JE. 1996. Metastasis from human breast cancer cell lines. Breast Cancer Research and Treatment, 39(1): 93−102. doi:  10.1007/BF01806081
    [139] Qin JY, Zhou ZM, Chen WL, Wang CY, Zhang HL, Ge GZ, et al. 2015. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nature Communications, 6(1): 8471. doi:  10.1038/ncomms9471
    [140] Rao GN, Piegorsch WW, Haseman JK. 1987. Influence of body weight on the incidence of spontaneous tumors in rats and mice of long-term studies. The American Journal of Clinical Nutrition, 45(1): 252−260. doi:  10.1093/ajcn/45.1.252
    [141] Rashid OM, Takabe K. 2015. Animal models for exploring the pharmacokinetics of breast cancer therapies. Expert Opinion on Drug Metabolism & Toxicology, 11(2): 221−230.
    [142] Ren J, Liu SJ, Cui C, Ten Dijke P. 2017. Invasive behavior of human breast cancer cells in embryonic Zebrafish. Journal of Visualized Experiments, (122): 55459.
    [143] Rockwell SC, Kallman RF, Fajardo LF. 1972. Characteristics of a serially transplanted mouse mammary tumor and its tissue-culture-adapted derivative. Journal of the National Cancer Institute, 49(3): 735−749.
    [144] Romieu-Mourez R, Kim DW, Shin SM, Demicco EG, Landesman-Bollag E, Seldin DC, et al. 2003. Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Molecular and Cellular Biology, 23(16): 5738−5754. doi:  10.1128/MCB.23.16.5738-5754.2003
    [145] Rose-Hellekant TA, Sandgren EP. 2000. Transforming growth factor alpha- and c-myc-induced mammary carcinogenesis in transgenic mice. Oncogene, 19(8): 1092−1096. doi:  10.1038/sj.onc.1203350
    [146] Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AOH, Zander SAL, et al. 2008. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proceedings of the National Academy of Sciences of the United States of America, 105(44): 17079−17084. doi:  10.1073/pnas.0806092105
    [147] Rottenberg S, Nygren AOH, Pajic M, van Leeuwen FWB, van der Heijden I, van de Wetering K, et al. 2007. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(29): 12117−12122. doi:  10.1073/pnas.0702955104
    [148] Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, et al. 2001. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Molecular Cancer Therapeutics, 1(2): 85−94.
    [149] Russo IH, Russo J. 1996. Mammary gland Neoplasia in long-term rodent studies. Environmental Health Perspectives, 104(9): 938−967. doi:  10.1289/ehp.96104938
    [150] Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ. 1990. Comparative study of human and rat mammary tumorigenesis. Laboratory Investigation; A Journal of Technical Methods and Pathology, 62(3): 244−278.
    [151] Sahabi K, Rajendren SK, Foong JN, Selvarajah GT. 2018. Mammary gland tumours in the dog, a spontaneous tumour model of comparative value to human breast cancer. Pertanika Journal of Tropical Agricultural Science, 41(2): 541−574.
    [152] Sandgren EP, Schroeder JA, Qui TH, Palmiter RD, Brinster RL, Lee DC. 1995. Inhibition of mammary gland involution is associated with transforming growth factor α but not c-myc-induced Tumorigenesis in transgenic mice. Cancer Research, 55(17): 3915−3827.
    [153] Santarelli R, Tzeng YJ, Zimmermann C, Guhl E, Graessmann A. 1996. SV40 T-antigen induces breast cancer formation with a high efficiency in lactating and virgin WAP-SV-T transgenic animals but with a low efficiency in ovariectomized animals. Oncogene, 12(3): 495−505.
    [154] Shafee N, Smith CR, Wei SZ, Kim Y, Mills GB, Hortobagyi GN, et al. 2008. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Research, 68(9): 3243−3250. doi:  10.1158/0008-5472.CAN-07-5480
    [155] Shao M, Xu TR, Chen CS. 2016. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 37(4): 191−204.
    [156] Shi HY, Zhang WG, Liang R, Abraham S, Kittrell FS, Medina D, et al. 2001. Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer Research, 61(18): 6945−6951.
    [157] Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. 1987. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell, 49(4): 465−475. doi:  10.1016/0092-8674(87)90449-1
    [158] Smith BF, Migone FK, Cox NR, Baker H. 2003. An in utero allotransplantation model of metastatic breast cancer in the cat. In Vivo, 17(1): 35−39.
    [159] Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW. 2000. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/- mice. Cancer Research, 60(13): 3605−11.
    [160] Stamp G, Fantl V, Poulsom R, Jamieson S, Smith R, Peters G, et al. 1992. Nonuniform expression of a mouse mammary tumor virus-driven int-2/Fgf-3 transgene in pregnancy-responsive breast tumors. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 3(12): 929−938.
    [161] Stewart TA, Pattengale PK, Leder P. 1984. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell, 38(3): 627−637. doi:  10.1016/0092-8674(84)90257-5
    [162] Strong LC. 1936. The establishment of the “a” strain of inbred mice. Journal of Heredity, 27(1): 21−24. doi:  10.1093/oxfordjournals.jhered.a104133
    [163] Su XF, Colditz GA, Willett WC, Collins LC, Schnitt SJ, Connolly JL, et al. 2010. Genetic variation and circulating levels of IGF-I and IGFBP-3 in relation to risk of proliferative benign breast disease. International Journal of Cancer, 126(1): 180−190. doi:  10.1002/ijc.24674
    [164] Sun BC, Zhang SW, Zhang DF, Li Y, Zhao XL, Luo Y, et al. 2008. Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer. Clinical Cancer Research, 14(21): 7050−7059. doi:  10.1158/1078-0432.CCR-08-0520
    [165] Suva LJ, Washam C, Nicholas RW, Griffin RJ. 2011. Bone metastasis: mechanisms and therapeutic opportunities. Nature Reviews Endocrinology, 7(4): 208−218. doi:  10.1038/nrendo.2010.227
    [166] Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al. 2015. Pertuzumab, Trastuzumab, and Docetaxel in HER2-positive metastatic breast cancer. The New England Journal of Medicine, 372(8): 724−734. doi:  10.1056/NEJMoa1413513
    [167] Szymanska H, Lechowska-Piskorowska J, Krysiak E, Strzalkowska A, Unrug-Bielawska K, Grygalewicz B, et al. 2014. Neoplastic and nonneoplastic lesions in aging mice of unique and common inbred strains contribution to modeling of human neoplastic diseases. Veterinary Pathology, 51(3): 663−679. doi:  10.1177/0300985813501334
    [168] Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T, Kai F, et al. 2009. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Review of Molecular Diagnostics, 9(5): 423−440. doi:  10.1586/erm.09.31
    [169] Thompson HJ, Meeker LD. 1983. Induction of mammary gland carcinomas by the subcutaneous injection of 1-methyl-1-nitrosourea. Cancer Research, 43(4): 1628−1629.
    [170] Thompson HJ, Singh M. 2000. Rat models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5(4): 409−420. doi:  10.1023/A:1009582012493
    [171] To C, Kim EH, Royce DB, Williams CR, Collins RM, Risingsong R, et al. 2014. The PARP inhibitors, veliparib and olaparib, are effective chemopreventive agents for delaying mammary tumor development in BRCA1-deficient mice. Cancer Prevention Research, 7(7): 698−707. doi:  10.1158/1940-6207.CAPR-14-0047
    [172] Törnell J, Rymo L, Isaksson OGP. 1991. Induction of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice. International Journal of Cancer, 49(1): 114−117. doi:  10.1002/ijc.2910490121
    [173] Trempe GL. 1976. Human breast cancer in culture. In: St-Arneault G, Band P, Israël L. Breast Cancer: A Multidisciplinary Approach. Berlin: Springer, 33–41.
    [174] Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. 1988. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55(4): 619−625. doi:  10.1016/0092-8674(88)90220-6
    [175] Tulotta C, Groenewoud A, Ewa Snaar-Jagalska B, Ottewell P. 2019. Animal models of breast cancer bone metastasis. In: Idris AI. Bone Research Protocols. New York, NY: Springer, 309–330.
    [176] Vargo-Gogola T, Rosen JM. 2007. Modelling breast cancer: one size does not fit all. Nature Reviews Cancer, 7(9): 659−672. doi:  10.1038/nrc2193
    [177] Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, et al. 2014. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell, 26(1): 136−149. doi:  10.1016/j.ccr.2014.05.020
    [178] Wakeling AE, Dukes M, Bowler J. 1991. A potent specific pure antiestrogen with clinical potential. Cancer Research, 51(15): 3867−3873.
    [179] Wang CY, Nie Z, Zhou ZM, Zhang HL, Liu R, Wu J, et al. 2015. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27 Kip1. Oncotarget, 6(19): 17685−17697. doi:  10.18632/oncotarget.3779
    [180] Wang MN, Yao LC, Cheng MS, Cai DY, Martinek J, Pan CX, et al. 2018. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. The FASEB Journal, 32(3): 1537−1549. doi:  10.1096/fj.201700740R
    [181] Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. 1994. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature, 369(6482): 669−671. doi:  10.1038/369669a0
    [182] Welsch CW. 1987. Rodent models to examine in vivo hormonal regulation of mammary gland Tumorigenesis. In: Medina D, Kidwell W, Heppner G, Anderson E. Cellular and Molecular Biology of Mammary Cancer. Boston: Springer, 163–179.
    [183] Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, et al. 2002. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. The American Journal of Pathology, 160(3): 1143−1153. doi:  10.1016/S0002-9440(10)64934-6
    [184] Wright LE, Ottewell PD, Rucci N, Peyruchaud O, Pagnotti GM, Chiechi A, et al. 2016. Murine models of breast cancer bone metastasis. BoneKEy Reports, 5: 804.
    [185] Xia HJ, Chen CS. 2011. Progress of non-human primate animal models of cancers. Zoological Research, 32(1): 70−80.
    [186] Xia HJ, He BL, Wang CY, Zhang HL, Ge GZ, Zhang YX, et al. 2014. PTEN/PIK3CA genes are frequently mutated in spontaneous and medroxyprogesterone acetate-accelerated 7, 12-dimethylbenz(a)anthracene-induced mammary tumours of tree shrews. European Journal of Cancer, 50(18): 3230−3242. doi:  10.1016/j.ejca.2014.10.012
    [187] Xia HJ, Wang CY, Zhang HL, He BL, Jiao JL, Chen CS. 2012. Characterization of spontaneous breast tumor in tree shrews (Tupaia belangeri chinenesis). Zoological Research, 33(1): 55−59.
    [188] Xiao J, Liu R, Chen CS. 2017. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zoological Research, 38(3): 127−137. doi:  10.24272/j.issn.2095-8137.2017.033
    [189] Xu XL, Wagner KU, Larson D, Weaver Z, Li CL, Ried T, et al. 1999. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genetics, 22(1): 37−43. doi:  10.1038/8743
    [190] Yang Y, Yang HH, Hu Y, Watson PH, Liu HT, Geiger TR, et al. 2017. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget, 8(19): 30621−30643. doi:  10.18632/oncotarget.15695
    [191] Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. 2001. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. Journal of Bone and Mineral Research, 16(8): 1486−1495. doi:  10.1359/jbmr.2001.16.8.1486
    [192] Zander SAL, Sol W, Greenberger L, Zhang YX, van Tellingen O, Jonkers J, et al. 2012. EZN-2208 (PEG-SN38) overcomes ABCG2-mediated topotecan resistance in BRCA1-deficient mouse mammary tumors. PLoS One, 7(9): e45248. doi:  10.1371/journal.pone.0045248
    [193] Zheng LL, Zhou BG, Meng XM, Zhu WF, Zuo AR, Wang XM, et al. 2014. A model of spontaneous mouse mammary tumor for human estrogen receptor- and progesterone receptor-negative breast cancer. International Journal of Oncology, 45(6): 2241−2249. doi:  10.3892/ijo.2014.2657
  • [1] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.   Animal models for the study of hepatitis B virus infection, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.013
    [2] Vinayakumar Siragam, Gary Wong, Xiang-Guo Qiu.  Animal models for filovirus infections, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.053
    [3] Xun Ma, Avery Sum-Yu Wong, Hei-Yin Tam, Samuel Yung-Kin Tsui, Dittman Lai-Shun Chung, Bo Feng.  In vivo genome editing thrives with diversified CRISPR technologies, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.012
    [4] Call for papers of the special issue on Animal Models and Infectious Diseases, Zoological Research.
    [5] Ming SHAO, Tian-Rui XU, Ce-Shi CHEN.  The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.4.191
    [6] Yun ZHANG.  Why do we study animal toxins?, Zoological Research. doi: 10.13918/j.issn.2095-8137.2015.4.183
    [7] Ming GUO, Wen-Zhe HO.  Animal models to study Mycobacterium tuberculosis and HIV co-infection, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.163
    [8] Jian-Hong WANG.  Non-human primate models in drug addiction deserve more attention, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.172
    [9] Xiao-Liang ZHANG, Wei PANG, Xin-Tian HU, Jia-Li LI, Yong-Gang YAO, Yong-Tang ZHENG.  Experimental primates and non-human primate (NHP) models of human diseases in China: current status and progress, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.447
    [10] Ai-Hua LEI, Wei PANG, Gao-Hong ZHANG, Yong-Tang ZHENG.  Use and research of pigtailed macaques in nonhuman primate HIV/AIDS models, Zoological Research. doi: 10.3724/SP.J.1141.2013.02077
    [11] Yu-Qi ZHAO, Gong-Hua LI, Jing-Fei HUANG.  Comparative systems biology between human and animal models based on next-generation sequencing methods, Zoological Research. doi: 10.3724/SP.J.1141.2013.E02E35
    [12] Special Issue for Primates and Animal Models of Human Diseases, Zoological Research.
    [13] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong.  Animal models of human glioma: the progress of application and investigation, Zoological Research. doi: 10.3724/SP.J.1141.2012.03337
    [14] XIA Hou-Jun, CHEN Ce-Shi.  Progress of non-human primate animal models of cancers, Zoological Research. doi: 10.3724/SP.J.1141.2011.01070
    [15] XU Lin.  Animal models of human diseases, Zoological Research. doi: 10.3724/SP.J.1141.2011.01001
    [16] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang.  Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides, Zoological Research. doi: 10.3724/SP.J.1141.2010.01066
    [17] XIA Hou-JUN, ZHANG Gao-Hong, ZHENG Yong-Tang.  Roles of Dendritic Cell in Disease Progression of AIDS Primate Models, Zoological Research. doi: 10.3724/SP.J.1141.2010.01057
    [18] ZHANG Li, BEN Kun-Long.  In vitro Infection of Tree Shrew Immunocytes with Human Immunodeficiency Virus Type Ⅰ, Zoological Research.
    [19] LAI Ren, ZHA Hong-Guang, ZHANG Yun.  Animal Toxins Acting on Ion Channels and Drug Discovery, Zoological Research.
    [20] HUANG Hai, BEN Kun-long, ZHENG Yong-tang.  Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome, Zoological Research.
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  2058
  • HTML全文浏览量:  1022
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 录用日期:  2020-06-19
  • 网络出版日期:  2020-06-27
  • 刊出日期:  2020-09-18

目录

    /

    返回文章
    返回