留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Metformin improves boar sperm quality via 5′-AMP-activated protein kinase-mediated energy metabolism in vitro

Rong-Nan Li Zhen-Dong Zhu Yi Zheng Ying-Hua Lv Xiu-E Tian De Wu Yong-Jun Wang Wen-Xian Zeng

Rong-Nan Li, Zhen-Dong Zhu, Yi Zheng, Ying-Hua Lv, Xiu-E Tian, De Wu, Yong-Jun Wang, Wen-Xian Zeng. Metformin improves boar sperm quality via 5′-AMP-activated protein kinase-mediated energy metabolism in vitro. Zoological Research, 2020, 41(5): 527-538. doi: 10.24272/j.issn.2095-8137.2020.074
Citation: Rong-Nan Li, Zhen-Dong Zhu, Yi Zheng, Ying-Hua Lv, Xiu-E Tian, De Wu, Yong-Jun Wang, Wen-Xian Zeng. Metformin improves boar sperm quality via 5′-AMP-activated protein kinase-mediated energy metabolism in vitro. Zoological Research, 2020, 41(5): 527-538. doi: 10.24272/j.issn.2095-8137.2020.074

二甲双胍调控AMPK介导的能量代谢改善体外保存猪精子品质

doi: 10.24272/j.issn.2095-8137.2020.074

Metformin improves boar sperm quality via 5′-AMP-activated protein kinase-mediated energy metabolism in vitro

Funds: This study was supported in part by the National Key R&D Program of China (2018YFD0501000) to W.X.Z.
More Information
  • 摘要: 精子的运动、获能及顶体反应等过程需要大量的能量。维持精子能量稳态对于改善猪精子体外保存的效果至关重要。二甲双胍通过激活AMP依赖的蛋白激酶(AMPK)维持细胞内能量代谢的稳态。因此,本研究旨在探究二甲双胍能否通过AMPK调控能量代谢而改善猪精子的品质。本研究对猪精子活力参数、质膜完整性、线粒体膜电位、ATP含量、葡萄糖摄取量和乳酸外排量等指标进行检测,并运用蛋白质免疫印迹和免疫荧光技术检测AMPK与磷酸化AMPK(172位点;p-AMPK)在精子中的定位和表达水平。结果显示,在17 °C保存过程中,添加二甲双胍显著提高精子活力、线粒体膜电位和ATP含量。同时,发现AMPK定位于精子的顶体、头尾连接段和中段,且p-AMPK分布于顶体后区、头尾连接段和中段。此外,添加二甲双胍显著提高37 °C孵育4h后的精子活力、线粒体膜电位、ATP含量、p-AMPK水平、葡萄糖摄取量和乳酸外排量。然而,添加AMPK抑制剂Compound C会抑制二甲双胍对精子的作用。综上所述,二甲双胍能够激活AMPK,进而维持猪精子能量代谢和线粒体的活性,从而改善精子功能与精液保存的效果。
  • Figure  1.  Effects of metformin addition on sperm plasma membrane integrity, acrosome membrane integrity, mitochondrial membrane potential (ΔΨm), and cellular ATP content during long-term preservation at 17 °C

    A, C: Sperm were treated with 0, 50, 100, 200, and 500 µmol/L metformin, respectively, in Modena medium. Sperm membrane integrity was evaluated using SYBR-14/PI kit at D1, D5, D9, and D13 (n=5) (A). Sperm acrosome integrity was evaluated using a FITC-PNA kit at D1, D5, D9, and D13 (n=3) (C). B, D: Sperm were treated with or without 200 µmol/L metformin in Modena medium. Sperm ΔΨm was evaluated using a JC-1 kit at D1, D5, D9, and D13 (n=5) (B). Cellular ATP content was evaluated using an ATP bioluminescence assay kit at D1, D5, D9, and D13 (D). Before ATP extraction, sperm counts were executed to normalize ATP content (n=5). Graph bars represent mean±SEM. Different lower-case letters indicate significant difference (P<0.05). Asterisks represent significant difference from control. *: P<0.05, **: P<0.01, determined by unpaired Student's t-test; Met: Metformin.

    Figure  2.  Subcellular localization of AMPK protein and phospho-Thr172 AMPK in boar sperm and AMPK phosphorylation analyzed by western blotting

    A, B: Fresh sperm were stained green with anti-AMPK antibody or anti-phospho-Thr172-AMPKα antibody, and sperm nuclei were stained with DAPI (blue). AMPK and p-AMPK proteins were detected with secondary antibody FITC conjugated goat anti-rabbit immunoglobulin G. Negative control: Primary antibody was not added. Images were visualized using confocal laser scanning microscopy. Serial images of right panels were obtained from a unique sperm. C, E: Sperm were treated with or without 200 µmol/L metformin at D1, D5, D9, and D13 of preservation at 17 °C. D, F: Sperm were incubated for 4 h at 37 °C with or without 200 µmol/L metformin in Modena medium, Modena+100 µmol/L AMPK inhibitor Compound C. C, D: Western blotting using anti-AMPK antibody and anti-phosphor (Thr172)-AMPKα antibody. Loading control was performed for each experiment in same membrane using anti-α tubulin antibody (n=5). E, F: Densitometric quantitation of phosphor (Thr172)-AMPKα bands obtained in C, D. Values obtained for phosphor (Thr172)-AMPKα bands were normalized with values of α-tubulin (n=3). Graph bars represent mean±SEM. Asterisks represent significant difference from control. *: P<0.05, **: P<0.01, determined by unpaired Student’s t-test; Different lower-case letters indicate significant difference (P<0.05).

    Figure  3.  Effects of metformin and Compound C on sperm motility, membrane integrity, and ΔΨm

    Sperm were incubated for 1 h and 4 h at 37 °C with or without metformin in Modena medium, Modena+100 µmol/L Compound C. A, B: Total motility and progressive motility were recorded using CASA system (n=3). C: Membrane integrity was evaluated using SYBR-14/PI kit (n=3). D: Mitochondrial membrane potential was evaluated using a JC-1 kit (n=5). Graph bars represent mean±SEM. Different lower-case letters indicate significant difference (P<0.05). Met: Metformin; CC: Compound C; Met+CC: Metformin+Compound C.

    Figure  4.  Effects of metformin and Compound C on sperm ATP content, glucose uptake, extracellular lactate content, and lactate dehydrogenase activity

    Sperm were incubated for 4 h at 37 °C with or without metformin in Modena medium, Modena+100 µmol/L Compound C. A: Cellular ATP content was evaluated using an ATP bioluminescence assay kit. Before ATP extraction, sperm counts were executed to normalize ATP content (n=3). B: Glucose uptake capability was measured using green fluorescence D-glucose analogue, 2-NBDG, in glucose-free medium. Results are presented as geometric mean of fluorescence intensity of live cells as measured by flow cytometry (n=3). C: Extracellular lactate content was evaluated using a lactate content assay kit, and sperm counts were performed to normalize lactate content (n=3). D: Relative lactate dehydrogenase activity was evaluated using an LDH activity assay kit and results are shown as percentage of untreated control sample (n=3). Graph bars represent mean±SEM. Different lower-case letters indicate significant difference (P<0.05). Met: Metformin; CC: Compound C; Met+CC: Metformin+Compound C.

    Figure  5.  Proposed model of regulation of metformin on boar sperm function via activation of AMPK

    Metformin enters the intracellular space by the transporter, resulting in AMPK activation, which facilitates glucose uptake and lactate efflux and maintains mitochondrial activity, thereby maintaining sperm functionality and improving the efficacy of boar sperm preservation in vitro.

    Table  1.   Effects of metformin addition on sperm motility parameters during long-term preservation at 17 °C

    Total motility (%)
    ControlMet - 50 μmol/LMet - 100 μmol/LMet - 200 μmol/LMet - 500 μmol/L
    0 d87.37±1.8886.65±1.7686.74±2.7587.65±0.9688.90±1.60
    1 d84.20±2.0883.06±3.3286.12±2.8788.17±1.8385.18±2.57
    3 d82.17±3.1184.70±3.0985.63±2.2985.30±2.0984.51±2.22
    5 d80.07±2.93*84.79±2.8085.03±1.5886.65±1.4483.29±2.27
    7 d77.63±3.47b*83.24±1.67ab84.26±2.14ab85.35±1.43a83.60±1.67ab
    9 d79.93±3.42b*82.16±2.15ab84.92±1.94ab86.31±1.93a81.35±2.61b
    11 d73.49±2.79c*77.80±3.17bc79.68±2.99ab86.11±2.00a82.19±2.69ab
    13 d66.82±3.90b*77.84±2.34a79.54±1.84a82.92±2.29a77.16±2.72a
    Progressive motility (%)
    ControlMet - 50 μmol/LMet - 100 μmol/LMet - 200 μmol/LMet - 500 μmol/L
    0 d78.46±2.8078.47±2.5876.47±2.0475.34±1.9176.85±3.56
    1 d72.29±1.9767.71±4.3374.03±3.8473.88±2.7667.86±3.66
    3 d66.56±3.56*68.70±2.5068.11±2.4571.60±3.0564.85±1.68
    5 d62.35±2.79b*68.70±3.90ab69.53±2.46ab73.08±3.57a67.83±2.92ab
    7 d61.48±2.14b*69.13±2.27ab67.02±2.53ab73.25±3.42a66.34±4.30ab
    9 d55.33±4.81b*55.56±3.99b61.59±3.23ab67.35±3.41a*60.74±2.48ab
    11 d42.52±4.18c*49.23±4.13bc55.83±3.08ab61.70±3.21a*55.35±2.40ab
    13 d38.16±2.71c*43.44±3.10bc49.00±4.02b59.26±3.44a*45.94±2.78b
    Sperm motility parameters were determined using the CASA system. Values are presented as mean±SEM. Different lower-case letters indicate significant difference (P<0.05) between treatments; asterisks represent significant difference from D0. *: P<0.05, determined by unpaired Student’s t-test. n=5. Met: Metformin.
    下载: 导出CSV
  • [1] Berstein LM. 2012. Metformin in obesity, cancer and aging: addressing controversies. Aging (Albany NY), 4(5): 320−329.
    [2] Bertoldo MJ, Guibert E, Tartarin P, Guillory V, Froment P. 2014. Effect of metformin on the fertilizing ability of mouse spermatozoa. Cryobiology, 68(2): 262−268. doi:  10.1016/j.cryobiol.2014.02.006
    [3] Bielas W, Nizanski W, Partyka A, Rzasa A, Mordak R. 2017. Effect of long-term storage in Safe Cell+ extender on boar sperm DNA integrity and other key sperm parameters. Acta Veterinaria Scandinavica, 59(1): 58. doi:  10.1186/s13028-017-0325-9
    [4] Brand KA, Hermfisse U. 1997. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB Journal, 11(5): 388−395. doi:  10.1096/fasebj.11.5.9141507
    [5] Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, et al. 2004. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?. Diabetes, 53(4): 1052−1059. doi:  10.2337/diabetes.53.4.1052
    [6] Calle-Guisado V, de Llera AH, Martin-Hidalgo D, Mijares J, Gil MC, Alvarez IS, et al. 2017. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility. Asian Journal of Andrology, 19(6): 707−714. doi:  10.4103/1008-682X.185848
    [7] Chandel NS, Avizonis D, Reczek CR, Weinberg SE, Menz S, Neuhaus R, et al. 2016. Are metformin doses used in murine cancer models clinically relevant?. Cell Metabolism, 23(4): 569−570. doi:  10.1016/j.cmet.2016.03.010
    [8] Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, et al. 2005. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes, 54(7): 2179−2187. doi:  10.2337/diabetes.54.7.2179
    [9] El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. 2000. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. Journal of Biological Chemistry, 275(1): 223−228. doi:  10.1074/jbc.275.1.223
    [10] Foretz M, Viollet B. 2011. Regulation of hepatic metabolism by AMPK. Journal of Hepatology, 54(4): 827−829. doi:  10.1016/j.jhep.2010.09.014
    [11] Fu J, Li Y, Wang L, Zhen L, Yang Q, Li P, et al. 2017. Bovine serum albumin and skim-milk improve boar sperm motility by enhancing energy metabolism and protein modifications during liquid storage at 17 °C. Theriogenology, 102: 87. doi:  10.1016/j.theriogenology.2017.07.020
    [12] Gravel SP, Hulea L, Toban N, Birman E, Blouin MJ, Zakikhani M, et al. 2014. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Research, 74(24): 7521−7533. doi:  10.1158/0008-5472.CAN-14-2643-T
    [13] Han JJ, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, et al. 2015. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecologic Oncology, 138(3): 668−675. doi:  10.1016/j.ygyno.2015.06.036
    [14] Hardie DG. 2011. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes and Development, 25(18): 1895−1908. doi:  10.1101/gad.17420111
    [15] Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4): 251−262. doi:  10.1038/nrm3311
    [16] Hirohashi N, Tamura-Nakano M, Nakaya F, Iida T, Iwata Y. 2016. Sneaker male squid produce long-lived spermatozoa by modulating their energy metabolism. Journal of Biological Chemistry, 291(37): 19324−19334. doi:  10.1074/jbc.M116.737494
    [17] Hurtado de Llera A, Martin-Hidalgo D, Garcia-Marin LJ, Bragado MJ. 2018. Metformin blocks mitochondrial membrane potential and inhibits sperm motility in fresh and refrigerated boar spermatozoa. Reproduction in Domestic Animals, 53(3): 733−741. doi:  10.1111/rda.13164
    [18] Hurtado de Llera A, Martin-Hidalgo D, Gil MC, Garcia-Marin LJ, Bragado MJ. 2012. AMP-activated kinase AMPK is expressed in boar spermatozoa and regulates motility. PloS One, 7(6): e38840. doi:  10.1371/journal.pone.0038840
    [19] Hurtado de Llera A, Martin-Hidalgo D, Rodriguez-Gil JE, Gil MC, Garcia-Marin LJ, Bragado MJ. 2013. AMP-activated kinase, AMPK, is involved in the maintenance of plasma membrane organization in boar spermatozoa. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(9): 2143−2151. doi:  10.1016/j.bbamem.2013.05.026
    [20] Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, et al. 2005. Glycolytic enzymes can modulate cellular life span. Cancer Research, 65(1): 177−185.
    [21] Lin SC, Hardie DG. 2018. AMPK: Sensing glucose as well as cellular energy status. Cell Metabolism, 27(2): 299−313. doi:  10.1016/j.cmet.2017.10.009
    [22] Lv YH, Zhang PF, Guo JY, Zhu ZD, Li XL, Xu D, et al. 2018. Melatonin protects mouse spermatogonial stem cells against hexavalent chromium-induced apoptosis and epigenetic histone modification. Toxicology and Applied Pharmacology, 340: 30−38. doi:  10.1016/j.taap.2017.12.017
    [23] Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. 2018. AMPK function in mammalian spermatozoa. International Journal of Molecular Sciences, 19(11): 3293. doi:  10.3390/ijms19113293
    [24] Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. 2013. Metformin improves healthspan and lifespan in mice. Nature Communications, 4(1): 2192. doi:  10.1038/ncomms3192
    [25] Nguyen TMD. 2017. Impact of 5′-AMP-activated protein kinase on male gonad and spermatozoa functions. Frontiers in Cell and Developmental Biology, 5: 25.
    [26] Nguyen TMD. 2019. Role of AMPK in mammals reproduction: Specific controls and whole-body energy sensing. Comptes Rendus Biologies, 342(1-2): 1−6. doi:  10.1016/j.crvi.2018.10.003
    [27] Nguyen TMD, Alves S, Grasseau I, Metayer-Coustard S, Praud C, Froment P, et al. 2014. Central role of 5′-AMP-activated protein kinase in chicken sperm functions. Biology of Reproduction, 91(5): 121.
    [28] Nguyen TMD, Seigneurin F, Froment P, Combarnous Y, Blesbois E. 2015. The 5′-AMP-activated protein kinase (AMPK) is involved in the augmentation of antioxidant defenses in cryopreserved chicken sperm. PloS One, 10(7): e0134420. doi:  10.1371/journal.pone.0134420
    [29] Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Dumont V, Van M, Wang H, et al. 2019. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB Journal, 33(2): 2858−2869. doi:  10.1096/fj.201800529RR
    [30] Rodríguez-Gil JE. 2006. Mammalian sperm energy resources management and survival during conservation in refrigeration. Reproduction in Domestic Animals, 41(S2): 11−20. doi:  10.1111/j.1439-0531.2006.00765.x
    [31] Rodríguez-Gil JE, Bonet S. 2016. Current knowledge on boar sperm metabolism: Comparison with other mammalian species. Theriogenology, 85(1): 4−11. doi:  10.1016/j.theriogenology.2015.05.005
    [32] Shabani Nashtaei M, Amidi F, Sedighi Gilani MA, Aleyasin A, Bakhshalizadeh S, Naji M, et al. 2017. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation. Andrology, 5(2): 313−326. doi:  10.1111/andr.12306
    [33] Swegen A, Lambourne SR, Aitken RJ, Gibb Z. 2016. Rosiglitazone improves stallion sperm motility, ATP content, and mitochondrial function. Biology of Reproduction, 95(5): 107. doi:  10.1095/biolreprod.116.142687
    [34] Tartarin P, Guibert E, Touré A, Ouiste C, Leclerc J, Sanz N, et al. 2012. Inactivation of AMPKα1 induces asthenozoospermia and alters spermatozoa morphology. Endocrinology, 153(7): 3468−3481. doi:  10.1210/en.2011-1911
    [35] Tsuda Y, Iwasawa K, Yokoyama M, Yamaguchi M. 2017. Trypsin-treated β-lactoglobulin improves glucose tolerance in C57BL/6 Mice by enhancing AMPK activation and glucose uptake in hepatocytes. Biological and Pharmaceutical Bulletin, 40(11): 1917−1922. doi:  10.1248/bpb.b17-00437
    [36] Ushiyama A, Priyadarshana C, Setiawan R, Miyazaki H, Ishikawa N, Tajima A, et al. 2019. Membrane raft-mediated regulation of glucose signaling pathway leading to acrosome reaction in chicken sperm. Biology of Reproduction, 100(6): 1482−1491. doi:  10.1093/biolre/ioz015
    [37] Vazirian M, Nabavi SM, Jafari S, Manayi A. 2018. Natural activators of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food and Chemical Toxicology, 122: 69−79. doi:  10.1016/j.fct.2018.09.079
    [38] Vial G, Detaille D, Guigas B. 2019. Role of mitochondria in the mechanism(s) of action of metformin. Frontiers in Endocrinology, 10: 294. doi:  10.3389/fendo.2019.00294
    [39] Vlavcheski F, Naimi M, Murphy B, Hudlicky T, Tsiani E. 2017. Rosmarinic acid, a rosemary extract polyphenol, increases skeletal muscle cell glucose uptake and activates AMPK. Molecules, 22(10): 1669. doi:  10.3390/molecules22101669
    [40] Waberski D, Riesenbeck A, Schulze M, Weitze KF, Johnson L. 2019. Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology, 137: 2−7. doi:  10.1016/j.theriogenology.2019.05.030
    [41] Xu L, Kong L, Wang J, Ash JD. 2018. Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium. Proceedings of the National Academy of Sciences of the United States of America, 115(41): 10475−10480. doi:  10.1073/pnas.1802724115
    [42] Zhu ZD, Kawai T, Umehara T, Hoque SAM, Zeng WX, Shimada M. 2019a. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radical Biology and Medicine, 141: 159−171. doi:  10.1016/j.freeradbiomed.2019.06.018
    [43] Zhu ZD, Li RN, Fan XT, Lv YH, Zheng Y, Hoque SAM, et al. 2019b. Resveratrol improves boar sperm quality via 5'AMP-activated protein kinase activation during cryopreservation. Oxidative Medicine and Cellular Longevity, 2019: 5921503.
    [44] Zhu ZD, Li RN, Ma GZ, Bai WJ, Fan XT, Lv YH, et al. 2018. 5′-AMP-activated protein kinase regulates goat sperm functions via energy metabolism in vitro. Cellular Physiology and Biochemistry, 47(6): 2420−2431. doi:  10.1159/000491616
  • [1] Qing-Jian LIANG, Lei ZHAO, Jia-Qi WANG, Qian CHEN, Wei-Hong ZHENG, Jin-Song LIU.  Effect of food restriction on the energy metabolism of the Chinese bulbul (Pycnonotus sinensis), Zoological Research.
    [2] YANG Ming-Hua, SU Jin-Zhu, LIU Jun, LI Ya-Hui.  Cloning and expression of Tssk1 & Tssk2 in mice and the presence & localization of them in mature sperm, Zoological Research. doi: 10.3724/SP.J.1141.2012.04381
    [3] PING Shu-Huang, WANG Cai-Yun, TANG Wen-Ru, LUO Ying, YANG Shi-Hua.  Effects of some extenders and monoamines on sperm cryopreservation in tree shrews (Tupaia belangeri), Zoological Research. doi: 10.3724/SP.J.1141.2012.01019
    [4] ZHANG Yuan-Xu, PING Shu-Huang, YANG Shi-Hua.  Morphological characteristics and cryodamage of Chinese tree shrew (Tupaia belangeri chinensis) sperm, Zoological Research. doi: 10.3724/SP.J.1141.2012.01029
    [5] WANG Xiao-Ai, YANG Jun-Xing, CHEN Xiao-Yong, PAN Xiao-Fu, LI Zai-Yun.  Cryopreservation of sperm from Neolissochilus benasi, Zoological Research. doi: 10.3724/SP.J.1141.2012.03283
    [6] LIU Jia, KONG Qing-Peng.  Energy metabolism pathway related genes and adaptive evolution of tumor cells, Zoological Research. doi: 10.3724/SP.J.1141.2012.06557
    [7] YE Ting, ZHU Jun-quan, YANG Wan-xi, WEI Pin, WU Xiong-fei.  Sperm Cryopreservation in Sparus macrocephalus and DNA Damage Detection with SCGE, Zoological Research. doi: 10.3724/SP.J.1141.2009.02151
    [8] WEN Ru-shu, FANG Zhan-qiang, CHEN Wei-ting.  Effects of 17β-estradiol on Vitellogenin Inducement and Gonad Development in Male Tanichthys albonubes, Zoological Research.
    [9] Adel A. B. Shahin*.  A Novel Type of Spermiogenesis in the Nile Catfish Chrysichthys auratus (Siluriformes: Bagridae) in Egypt, with Description of Spermatozoon Ultrastructure ( in English), Zoological Research.
    [10] ZHANG Yong-pu, YING Xue-ping, JI Xiang.  Ultrastructure of the Spermatozoon of the Northern Grass Lizard (Takydromus septentrionalis) with Comments on the Variability of Sperm Morphology Among Lizard Taxa, Zoological Research.
    [11] AI Xiao-jie, ZHENG Yuan-lin, CHEN Wei-hua, HAN Zheng-kang.  Effects of Cysteamine on the Metabolism of Sugar and Protein in Adult Geese, Zoological Research.
    [12] ZHAO Jun, CHEN Xiang-lin.  Phenotypic Differentiation of Offspring Developed from Pengze Crucian Carp Eggs Activated by Heterlogous Sperm, Zoological Research.
    [13] ZHU Dong-Fa, WANG Gui-Zhong, LI Shao-Jing.  Sperm Ultrastructure of The Squat Lobster,Thenus orientalis (Crustacea,Decapoda), Zoological Research.
    [14] ZHANG Mei-fen, ZHAO Xiang, WENG Xiao-yan, XU Yi-yan.  Histology and Histochemistry of Oviductal Sperm-Storage Glands in Canary Bird, Zoological Research.
    [15] LIU Hong-lin, JI Qing, CHENG Yi-feng, JIANG Zhi-hua, HUANG Yue-ying.  Detecting Association of Exogenous DNA With Chicken Sperm Using Autoradiography, Zoological Research.
    [16] TAN Zhu-jun, HAN Ya-li.  The Effects of Carnosine on Glycolysis of Ram Spermatozoa, Zoological Research.
    [17] BEN Kun-long, FENG Shu-lin, CAO Xiao-mei et al..  The Biological Function of Antimurine Sperm-Specific Lactate Dehydrogenase C4 Monoclonal IgA Assembled With or Without Secretory Component, Zoological Research.
    [18] SHANG En-yuan, JI Wei-zhi, YANG Shang-chuan, CHEN Jian-chun, ZOU Ru-jin.  Electron Microscopical Study of Tibetan Macaque (Macaca thibetana) Sperm, Zoological Research.
    [19] ZHANG Tian-yin, FENG Shu-mang, PAN Zhong-zong.  Scanning Electron Microscopic Observations on The Sperm Entry Into The Eggs of Goldfish,Carassius auratus, Zoological Research.
    [20] SHENG Qi-zhang, WU Kun-min, CAI Zhen-yan.  Dynamical Action of Sperm Penetration Into The Egg of Misgurnus anguillicaudatus, Zoological Research.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  614
  • HTML全文浏览量:  318
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 录用日期:  2020-07-10
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2020-09-18

目录

    /

    返回文章
    返回