留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Qi Chen, Zhao-Xia Ma, Li-Bin Xia, Zhen-Ni Ye, Bao-Ling Liu, Tie-Kun Ma, Peng-Fei Bao, Xing-Fei Wu, Cong-Tao Yu, Dai-Ping Ma, Yuan-Yuan Han, Wen-Guang Wang, De-Xuan Kuang, Jie-Jie Dai, Rong-Ping Zhang, Min Hu, Hong Shi, Wen-Lin Wang, Yan-Jiao Li. A tree shrew model for steroid-associated osteonecrosis. Zoological Research, 2020, 41(5): 564-568. doi: 10.24272/j.issn.2095-8137.2020.061
Citation: Qi Chen, Zhao-Xia Ma, Li-Bin Xia, Zhen-Ni Ye, Bao-Ling Liu, Tie-Kun Ma, Peng-Fei Bao, Xing-Fei Wu, Cong-Tao Yu, Dai-Ping Ma, Yuan-Yuan Han, Wen-Guang Wang, De-Xuan Kuang, Jie-Jie Dai, Rong-Ping Zhang, Min Hu, Hong Shi, Wen-Lin Wang, Yan-Jiao Li. A tree shrew model for steroid-associated osteonecrosis. Zoological Research, 2020, 41(5): 564-568. doi: 10.24272/j.issn.2095-8137.2020.061

一种激素相关性骨坏死树鼩模型

doi: 10.24272/j.issn.2095-8137.2020.061

A tree shrew model for steroid-associated osteonecrosis

Funds: This study was supported by the National Science and Key Technology Support Program (2014BAI01B01-07) and Science and Technology Key Projects of Kunming (2014-04-A-S-01-3072)
More Information
  • 摘要: 骨坏死是骨科常见的人类疾病。治疗困难,半数患者可能需要人工关节置换,造成较大的经济负担,导致生活质量下降。激素是造成骨坏死的主要原因之一,高剂量的皮质类固醇被认为是造成骨坏死最危险的因素。由于该病治疗的复杂性,我们需要更好的动物模型,可以广泛用于药物开发和测试等。树鼩与灵长类动物的关系比啮齿类动物和灵长类动物的关系更密切。我们成功建立了一个树鼩模型来建立和评估类固醇相关性骨坏死(SAON)。联合使用低剂量脂多糖(LPS)和高剂量甲基强的松龙(MPS),12周后可建立骨坏死树鼩模型。血清生化和组织病理学分析表明,该树鼩模型是理想的。因此,这项工作为类固醇相关性骨坏死的研究和治疗方法的优化提供了一个有用的动物模型。
    #Authors contributed equally to this work
  • Figure  1.  Micro-CT analysis, histological evaluation, and SEM analysis of femoral heads in control and SAON groups

    A: In control group, femoral heads were properly shaped, with no evidence of cortical bone collapse, and trabecular bone was uniform, dense, continuous, and of normal thickness. In SAON group, femoral heads showed changes in shape, with evidence of cortical bone partial collapse, trabecular fracture, trabecular sparseness, thinning, and increased intercellular spacing. B: Micro-CT evaluation of control and SAON groups. All data are presented as mean±SD (n=6). *: P<0.05, **: P<0.01, vs. control group. BMD: Bone mineral density; BV/TV: Bone tissue volume fraction; BS/BV: Bone surface/volume ratio; Tb. N: Trabecular number; Tb. Th: Trabecular thickness; Tb. Sp: Trabecular separation. C, D: In control group, bone trabeculae were dense and intact, rich in bone marrow cells, and contained only a few fused adipose cells. In SAON group, trabecular bone displayed a disordered structure that appeared thinner and sparser, showed partial fractures, and contained adipose cells that were fused into vacuoles; bone trabeculae in SAON group contained more empty lacunae when compared to those in control group. E, F: In control group, bone trabeculae were dense, trabecular spacing was small (at low magnification), trabecular surface was smooth, and there were dense bone fibers (at high magnification). G–J: In SAON group, bone trabeculae were sparser, trabecular spacing was increased (at low magnification), and trabecular bone surface was disordered (at high magnification).

    Table  1.   Micro-CT evaluation of control and SAON groups (n=6, X±S)

    Group BMD value BV/TV (%) BS/BV (/mm) Tb. Th (mm) Tb. Sp (mm) Tb. N (/mm)
    Control 0.5410±0.0333 45.43±3.87 28.72±4.69 0.11±0.01 0.21±0.01 4.28±0.22
    SAON 0.4709±0.0492 38.03±5.05 32.11±5.53 0.10±0.02 0.25±0.02** 3.77±0.27**
    BMD: Bone mineral density; BV/TV: Bone tissue volume fraction; BS/BV: Bone surface/volume ratio; Tb. Th: Trabecular thickness; Tb. Sp: Trabecular separation; Tb. N: Trabecular number. Compared with control group, : P>0.05, : P<0.05, **: P<0.01.
    下载: 导出CSV
  • [1] Amanatullah DF, Strauss EJ, Di Cesare PE. 2011. Current management options for osteonecrosis of the femoral head: part II, operative management. American Journal of Orthopedics, 40(10): E216−E225.
    [2] Beckmann R, Shaheen H, Kweider N, Ghassemi A, Fragoulis A, Hermanns-Sachweh B, et al. 2014. Enoxaparin prevents steroid-related avascular necrosis of the femoral head. The Scientific World Journal, 2014: 347813.
    [3] Bekler H, Uygur AM, Gökçe A, Beyzadeoğlu T. 2007. The effect of steroid use on the pathogenesis of avascular necrosis of the femoral head: an animal model. Acta Orthopaedica et Traumatologica Turcica, 41(1): 58−63.
    [4] Calder JDF, Pearse MF, Revell PA. 2001. The extent of osteocyte death in the proximal femur of patients with osteonecrosis of the femoral head. The Journal of Bone and Joint Surgery, 83–B(3): 419−422.
    [5] Cantatore FP, Carrozzo M, Magli DM, Pipitone V. 1991. Mononuclear cells are not involved in BGP synthesis and secretion. Clinical Rheumatology, 10(1): 28−30. doi:  10.1007/BF02208029
    [6] Chan MHM, Chan PKS, Griffith JF, Chan IHS, Lit LCW, Wong CK, et al. 2006. Steroid-induced osteonecrosis in severe acute respiratory syndrome: a retrospective analysis of biochemical markers of bone metabolism and corticosteroid therapy. Pathology, 38(3): 229−235. doi:  10.1080/00313020600696231
    [7] Cui QJ, Wang GJ, Su CC, Balian G. 1997. The Otto Aufranc Award. Lovastatin prevents steroid induced adipogenesis and osteonecrosis. Clinical Orthopaedics and Related Research, (344): 8−19.
    [8] De Ruijter J, Maas M, Janssen A, Wijburg FA. 2013. High prevalence of femoral head necrosis in Mucopolysaccharidosis type III (Sanfilippo disease): a national, observational, cross-sectional study. Molecular Genetics and Metabolism, 109(1): 49−53. doi:  10.1016/j.ymgme.2013.03.004
    [9] Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. 2013. Genome of the Chinese tree shrew. Nature Communications, 4: 1426−1426. doi:  10.1038/ncomms2416
    [10] Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, et al. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi:  10.24272/j.issn.2095-8137.2019.063
    [11] Fazzalari NL, Kuliwaba JS, Forwood MR. 2002. Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Bone, 31(6): 697−702. doi:  10.1016/S8756-3282(02)00906-7
    [12] Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, et al. 1996. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. Journal of Bone and Mineral Research, 11(10): 1531−1538.
    [13] Janke LJ, Liu CC, Vogel P, Kawedia J, Boyd KL, Funk AJ, et al. 2013. Primary epiphyseal arteriopathy in a mouse model of steroid-induced osteonecrosis. The American Journal of Pathology, 183(1): 19−25. doi:  10.1016/j.ajpath.2013.03.004
    [14] Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. 2012. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis and Cartilage, 20(4): 256−260. doi:  10.1016/j.joca.2012.02.010
    [15] Kim YH, Kim JS. 2004. Histologic analysis of acetabular and proximal femoral bone in patients with osteonecrosis of the femoral head. The Journal of Bone and Joint Surgery, 86(11): 2471−2474. doi:  10.2106/00004623-200411000-00017
    [16] Li CH, Yan LZ, Ban WZ, Tu Q, Wu T, Wang L, et al. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2): 241−252. doi:  10.1038/cr.2016.156
    [17] Mohamed Y, Haifa H, Datel O, Fadoua HN, Smeh BH, Mahbouba J, et al. 2014. The role of biochemical markers of bone turnover in the diagnosis of osteoporosis and predicting fracture risk. La Tunisie Medicale, 92(5): 304−310.
    [18] Mont MA, Jones LC, Hungerford DS. 2006. Nontraumatic osteonecrosis of the femoral head: ten years later. The Journal of Bone & Joint Surgery, 88(5): 1117−1132.
    [19] National Research Council Committee for the Update of the Guide for The C & Use of Laboratory A. 2011. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: National Academies Press.
    [20] Petruzziello F, Fouillen L, Wadensten H, Kretz R, Andren PE, Rainer G, et al. 2012. Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach. Journal of Proteome Research, 11(2): 886−896. doi:  10.1021/pr200709j
    [21] Qin L, Zhang G, Sheng H, Yeung KW, Yeung HY, Chan CW, et al. 2006. Multiple bioimaging modalities in evaluation of an experimental osteonecrosis induced by a combination of lipopolysaccharide and methylprednisolone. Bone, 39(4): 863−871. doi:  10.1016/j.bone.2006.04.018
    [22] Quan JJ, Zhou CX, Johnson NW, Francis G, Dahlstrom JE, Gao J. 2012. Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma. Pathology, 44(3): 221−227. doi:  10.1097/PAT.0b013e3283513f3b
    [23] Ryoo S, Lee S, Jo S, Lee S, Kwak A, Kim E, et al. 2014. Effect of lipopolysaccharide (LPS) on mouse model of steroid-induced avascular necrosis in the femoral head (ANFH). Journal of Microbiology and Biotechnology, 24(3): 394−400. doi:  10.4014/jmb.1311.11057
    [24] Sun Y, Feng Y, Zhang CQ, Cheng XG, Chen SB, Ai ZS, et al. 2011. Beneficial effect of autologous transplantation of endothelial progenitor cells on steroid-induced femoral head osteonecrosis in rabbits. Cell Transplantation, 20(2): 233−243. doi:  10.3727/096368910X522234
    [25] Szulc P, Delmas PD. 2008. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporosis International, 19(12): 1683−1704. doi:  10.1007/s00198-008-0660-9
    [26] Wang A, Ren M, Wang JC. 2018. The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature. Gene, 671: 103−109. doi:  10.1016/j.gene.2018.05.091
    [27] Wang YL, Ma ZX, Zheng YY, Liu BL, Bao PF, Wu XF, et al. 2019. Establishment of an osteoporosis model in tree shrews by bilateral ovariectomy and comprehensive evaluation. Experimental and Therapeutic Medicine, 17(5): 3644−3654. doi:  10.3892/etm.2019.7339
    [28] Wang YX. 1987. Taxonomic research on Burma-Chinese tree Shrew, Tupaia belangeri (Wagner), from Southern China. Zoological Research, 8(3): 213−230. (in Chinese)
    [29] Xi HB, Tao WJ, Jian ZG, Sun XF, Gong XH, Huang LX, et al. 2017. Levodopa attenuates cellular apoptosis in steroid-associated necrosis of the femoral head. Experimental and Therapeutic Medicine, 13(1): 69−74. doi:  10.3892/etm.2016.3964
    [30] Xiao J, Liu R, Chen CS. 2017. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zoological Research, 38(3): 127−137. doi:  10.24272/j.issn.2095-8137.2017.033
    [31] Xing HJ, Jia K, He J, Shi CZ, Fang MX, Song LL, et al. 2015. Establishment of the tree shrew as an alcohol-induced Fatty liver model for the study of alcoholic liver diseases. PLoS One, 10(6): e0128253. doi:  10.1371/journal.pone.0128253
    [32] Xu JZ, Gong HP, Lu ST, Deasey MJ, Cui QJ. 2018. Animal models of steroid-induced osteonecrosis of the femoral head—a comprehensive research review up to 2018. International Orthopaedics, 42(7): 1729−1737. doi:  10.1007/s00264-018-3956-1
    [33] Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126. doi:  10.24272/j.issn.2095-8137.2017.032
    [34] Ye LH, He M, Huang YC, Zhao GQ, Lei YJ, Zhou YC, et al. 2016. Tree shrew as a new animal model for the study of lung cancer. Oncology Letters, 11(3): 2091−2095. doi:  10.3892/ol.2016.4156
    [35] Zhang XH, Dai ZX, Zhang GH, Han JB, Zheng YT. 2013. Molecular characterization, balancing selection, and genomic organization of the tree shrew (Tupaia belangeri) MHC class I gene. Gene, 522(2): 147−155. doi:  10.1016/j.gene.2013.03.113
    [36] Zheng LZ, Liu Z, Lei M, Peng J, He YX, Xie XH, et al. 2013. Steroid-associated hip joint collapse in bipedal emus. PLoS One, 8(10): e76797. doi:  10.1371/journal.pone.0076797
    [37] Zheng LZ, Wang JL, Kong L, Huang L, Tian L, Pang QQ, et al. 2018. Steroid-associated osteonecrosis animal model in rats. Journal of Orthopaedic Translation, 13: 13−24. doi:  10.1016/j.jot.2018.01.003
  • [1] Ling Xu, Dan-Dan Yu, Yu-Hua Ma, Yu-Lin Yao, Rong-Hua Luo, Xiao-Li Feng, Hou-Rong Cai, Jian-Bao Han, Xue-Hui Wang, Ming-Hua Li, Chang-Wen Ke, Yong-Tang Zheng, Yong-Gang Yao.  COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.053
    [2] Lan-Zhen YAN, Bin SUN, Long-Bao LYU, Yu-Hua MA, Jia-Qi CHEN, Qing LIN, Ping ZHENG, Xu-Dong ZHAO.  Early embryonic development and transplantation in tree shrews, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.4.252
    [3] Ling XU, Yu FAN, Xue-Long JIANG, Yong-Gang YAO.  Molecular evidence on the phylogenetic position of tree shrews, Zoological Research. doi: 10.3724/SP.J.1141.2013.02070
    [4] Cai-Yun WANG, Yun-Han MA, Da-Jian HE, Shi-Hua YANG.  cDNA cloning and sequence analysis of pluripotency genes in tree shrews (Tupaia belangeri), Zoological Research. doi: 10.3724/SP.J.1141.2013.02127
    [5] Bo LI, Rong-Ping ZHANG, Jin-Tao LI, Bao-Li HE, Hong ZHEN, Li-Mei WANG, Jian-Lin JIAO.  Measurement and analysis of anatomical parameter values in tree shrews, Zoological Research. doi: 10.3724/SP.J.1141.2013.02132
    [6] Xiao-Yan HUANG, Ming-Li LI, Juan XU, Yue-Dong GAO, Wen-Guang WANG, An-Guo YIN, Xiao-Fei LI, Xiao-Mei SUN, Xue-Shan XIA, Jie-Jie DAI.  Analysis of the molecular characteristics and cloning of full-length coding sequence of Interleukin-2 in tree shrews, Zoological Research. doi: 10.3724/SP.J.1141.2013.02121
    [7] TIAN Wei-Wei, GAO Yue-Dong, GUO Yan, HUANG Jing-Fei, XIAO Chang, LI Zuo-Sheng, ZHANG Hua-Tang.  Cloning of full-length coding sequence of tree shrew CD4 and prediction of its molecular characteristics, Zoological Research. doi: 10.3724/SP.J.1141.2012.01060
    [8] LI Ming-Li, TIAN Wei-Wei, GAO Yue-Dong, GUO Yan, HUANG Jing-Fei, ZHANG Hua-Tang.  Genome-wide prediction of interferon family members of tree shrew and their molecular characteristics analysis, Zoological Research. doi: 10.3724/SP.J.1141.2012.01067
    [9] LI Yi-Jiang, GAO Yue-Dong, GUO Yan, LU Cai-Xia, HUANG Jing-Fei, XIA Xue-Shan, DA.  Cloning of full-length coding sequence of tree shrew CD3ε and prediction of its molecular characteristics, Zoological Research. doi: 10.3724/SP.J.1141.2010.05483
    [10] ZHANG Wu-Xian, WANG Zheng-Kun, NIAN Yong-Kun, XU Wei-Jiang, YAO Zheng.  The Effects of Cold Acclimation on Thermogenesis in Tree Shrews (Tupaia belangeri), Zoological Research.
    [11] ZHOU Tian-lu, ZHONG Yong-mei, LI Xia, SU Zhao-yu.  Circadlan Rhythm of Urination and Its Change After Suprachiasmatic Nucleus Lesion in Tree Shrews, Zoological Research.
    [12] WANG Zheng-kun, LI Qing-fen, SUN Ru-yong.  The Characteristics of Nonshivering Thermogenesis and Cellular Respiration in The Tree Shrews, Zoological Research.
    [13] LU Jin-ming, ZOU Ru-jin, JI Wei-zhi, XIE Yun-hua, YAN Ye WEI Yun-zhen.  The Feed Contained Different Proteints Influences the Nitrogen Balance in Tree Shrews, Zoological Research.
    [14] WU Bao-qi, HE Shun-jing.  A Micro-Quantitative Analysis of Types of Residuary Diets Among Excrements of A Group of Rhinopithecus Bieti in Snowing Season, Zoological Research.
    [15] ZOU Ru-jin, TIAN Bao-pin, JI Wei-zhi, LI Rui-yuan.  Research on The Piebaldism of Tree Shrews Breeding in The Captivity, Zoological Research.
    [16] LIU Rui-qing, SHI Li-ming, CHEN Yu-ze.  Comparative Studies on Chromosoes of 3 Subspecies of Tupaia belangeri, Zoological Research.
    [17] JI Wei-zhi, ZOU Ru-jin, YANG Shang-chuan.  A Comparative Study of Lactate Dehydrogenase (LDH) Isozymes in Yunnan and Guangxi Tree Shrews, Zoological Research.
    [18] TIAN Bao-ping, PEN Yian-zhang, HOU Yi-di.  Investigation of Parasites on Chinese Tree Shrews, Zoological Research.
    [19] ZOU Ru-jin, JI Wei-zhi, SHA Lin-li, YAN Ye, YANG Ke-qin.  Studies of Ontogeny in the Tree Shrews (Tupaia belangeri chinensis), Zoological Research.
    [20] XIAO Chang-hua, ZHAN Hong-ji, LEI Ke-jian.  Study on Venom of Bungarus fasciatus,The Purification and Biochemical Analysis of Cardiotoxic Principles, Zoological Research.
  • ZR-2020-061_Supplementary Materials.pdf
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  180
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-24
  • 录用日期:  2020-07-01
  • 网络出版日期:  2020-07-29
  • 刊出日期:  2020-09-18

目录

    /

    返回文章
    返回