留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam

Xing-Han Chen Sen Yang Wei Yang Yuan-Yuan Si Rui-Wen Xu Bin Fan Le Wang Zi-Ning Meng

Xing-Han Chen, Sen Yang, Wei Yang, Yuan-Yuan Si, Rui-Wen Xu, Bin Fan, Le Wang, Zi-Ning Meng. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam. Zoological Research, 2020, 41(1): 61-69. doi: 10.24272/j.issn.2095-8137.2020.006
Citation: Xing-Han Chen, Sen Yang, Wei Yang, Yuan-Yuan Si, Rui-Wen Xu, Bin Fan, Le Wang, Zi-Ning Meng. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam. Zoological Research, 2020, 41(1): 61-69. doi: 10.24272/j.issn.2095-8137.2020.006

半咸水性多毛类蠕虫疣吻沙蚕的种群遗传结构和历史演化动态

doi: 10.24272/j.issn.2095-8137.2020.006

First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam

Funds: This work was supported by the Industry-AcademicResearch Cooperation Program of Academician Workstation of Guangdong Province (2013B090400017), Natural Science Foundation of Guangdong Province (2016A030307036), and Yangfan Innovative & Entrepreneurial Research Team Project for Guangdong Province (201312H10)
More Information
  • 摘要:

    疣吻沙蚕隶属环节动物门多毛纲,广泛分布于西太平洋沿岸的咸淡水交汇水域。它不仅可以作为生物标志物监控水质,而且在水产业中还是优良的生物饵料, 还是亚洲某些地区人们喜食的高档水产品。近年来,由于生态栖息地的破坏及过度捕捞等的影响,导致疣吻沙蚕的自然资源量锐减。为了更好地保护和利用这一资源,本研究基于线粒体COI基因对疣吻沙蚕的种群遗传变异和历史演化动态进行了研究。来自中国东南和越南北部沿海地区自然群体的320个个体共发现94个核苷酸多态位点和85个单倍型,呈现较高的单倍型多样性 (Hd=0.926) 和相对较低的核苷酸多样性 (π=0.032)。基于遗传分化指数ΦST (0.026–0.951, P<0.01) 可检测到6个显著遗传分化的地理群体,并且地理距离和遗传距离间呈现明显的距离隔离模式 (r=0.873, P=0.001)。利用单倍型构建的系统进化树及单倍型网络图均显示不同地理群体可分为三个遗传谱系,分子方差分析 ( AMOVA) 表明分支间的遗传变异是总变异的主要来源 (89.96%)。中性检验及错配分布显示疣吻沙蚕于更新世中晚期,距今约1.7–24.6万年前经历过显著的种群扩张。本研究首次对疣吻沙蚕的遗传背景进行了初步评估,可为本物种的种质资源保护提供依据并有助于更好了解其生态和进化历史。

    #Authors contributed equally to this work
  • Figure  1.  Sampling locations of T. heterochaetus used in this study (indicated by solid cycles)

    Corresponding location abbreviations are as in Table 1.

    Figure  2.  Neighbor-joining phylogenetic tree of T. heterochaetus based on COI haplotypes

    Bootstrap values >60% are shown near nodes (1 000 replicates), number in parentheses after location code is frequency of haplotypes. Perinereis aibuhitensis (GenBank accession No.: NC023943.1) was used as an outgroup. WZ: Wenzhou; FA: Fu’ an; FZ: Fuzhou; ZS: Zhongshan; YJ: Yangjiang; QZ: Qinzhou; HP: Hai Phong; ND: Nam Dịnh.

    Figure  3.  Median-joining network of T. heterochaetus based on COI haplotypes

    Each circle represents a haplotype and area is proportional to its frequency. Colors of circles denote geographic origin, white dots represent hypothetical intermediate haplotypes. WZ: Wenzhou; FA: Fu’ an; FZ: Fuzhou; ZS: Zhongshan; YJ: Yangjiang; QZ: Qinzhou; HP: Hai Phong; ND: Nam Dịnh.

    Table  1.   Sampling information on T. heterochaetus in this study

    Location codeLocalityCountrySample size (n)Longitude (E)Latitude (N)
    WZWenzhou, ZhejiangChina40121°18’28°38’
    FAFu’an, FujianChina40119°40’26°59’
    FZFuzhou, FujianChina40119°18’25°58’
    YJYangjiang, GuangdongChina40112°02’21°51’
    ZSZhongshan, GuangdongChina40113°21’22°15’
    QZQinzhou, GuangxiChina40108°29’21°56’
    HPHai PhongVietnam40106°35’20°43’
    NDNam DịnhVietnam40106°22’20°20’
    下载: 导出CSV

    Table  2.   Genetic diversity of eight T. heterochaetus locations based on COI gene sequences

    Location (lineage)nSHHdπk
    WZ4032230.9490.009 126.465
    FA4013100.7760.004 743.362
    FZ4016130.7830.004 703.329
    ZS401860.2370.001 270.900
    YJ4012130.6540.001 400.994
    QZ4011100.4410.001 040.735
    HP4017160.6450.001 591.124
    ND40780.6180.001 050.744
    Lineage A12042390.8610.007 115.043
    Lineage B8029180.6600.001 751.239
    Lineage C12029290.7670.002 741.942
    Overall32094850.9260.032 1522.794
    n: Sample size; H: Number of haplotypes; S: Number of polymorphic sites; Hd: Haplotype diversity; π: Nucleotide diversity; k: Mean number of pairwise differences. WZ: Wenzhou; FA: Fu’ an; FZ: Fuzhou; ZS: Zhongshan; YJ: Yangjiang; QZ: Qinzhou; HP: Hai Phong; ND: Nam Dịnh. Lineage A=WZ+FA+FZ, Lineage B=ZS+YJ, Lineage C=QZ+HP+ND.
    下载: 导出CSV

    Table  3.   AMOVA results of T. heterochaetus based on mtDNA

    Source of variationd. f.Sum of squaresVariance componentPercentage of variation (%)Fixation indices
    Among lineages23171.12114.871 Va89.86FSC =0.342*
    Among populations within lineages5120.2790.573 Vb3.47FST =0.933*
    Within populations312344.2251.103 Vc6.67FCT =0.818*
    Total3193635.62516.548
    *: P<0.05; d. f.: Degree of freedom; Va: Variance component due to differences among lineages, Vb: Variance component due to differences among populations within lineages, Vc: Variance omponent due to differences among individuals within populations; FSC=Vb/(Vb+Vc), FST=(Va+Vb)/(Va+Vb+Vc), FCT =Va/(Va+Vb+Vc).
    下载: 导出CSV

    Table  4.   Pairwise ФST (below diagonal) and genetic distance (above diagonal) among different T. heterochaetus locations

    Location codeWZFAFZZSYJQZHPND
    WZ0.0090.0090.0580.0570.0610.0610.060
    FA0.2260.0050.0590.0580.0620.0630.063
    FZ0.238−0.0130.0590.0580.0620.0630.063
    ZS0.9060.9460.9460.0020.0200.0190.019
    YJ0.9030.9440.9440.3780.0220.0210.021
    QZ0.9120.9500.9510.9410.9420.0050.005
    HP0.9070.9440.9470.9220.9260.7110.001
    ND0.9110.9510.9510.9360.9380.7710.017
    ФST values in bold type indicate statistical significance (P<0.01). WZ: Wenzhou; FA: Fu’ an; FZ: Fuzhou; ZS: Zhongshan; YJ: Yangjiang; QZ: Qinzhou; HP: Hai Phong; ND: Nam Dịnh.
    下载: 导出CSV

    Table  5.   Parameters of neutrality test and mismatch distribution analysis for six T. heterochaetus populations

    PopulationNeutrality testMismatch distribution analysisExpansion time
    Tajima’s DFu’s FsSSDHRITau (τ)t (Ma)
    WZ–0.486–7.786**0.0230.0246.4250.113
    FA+FZ–0.395–5.076*0.0520.1234.8340.085
    ZS–2.571**–1.6070.0020.40813.9360.246
    YJ–1.995**–11.090**0.0010.061.0620.019
    QZ–2.172**–7.960**0.000 10.1241.1030.019
    HP+ND–2.333**–24.297**0.0030.0810.9690.017
    *: P<0.05, **: P<0.01. WZ: Wenzhou; FA: Fu’ an; FZ: Fuzhou; ZS: Zhongshan; YJ: Yangjiang; QZ: Qinzhou; HP: Hai Phong; ND: Nam Dịnh.
    下载: 导出CSV
  • [1] Avise JC. 2000. Phylogeography: the History and Formation of Species. Cambridge, MA: Harvard University Press.
    [2] Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1): 37−48. doi:  10.1093/oxfordjournals.molbev.a026036
    [3] Barrett RDH, Schluter D. 2008. Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1): 38−44.
    [4] Bilton DT, Paula J, Bishop JDD. 2002. Dispersal, genetic differentiation and speciation in estuarine organisms. Estuarine, Coastal and Shelf Science, 55(6): 937−952. doi:  10.1006/ecss.2002.1037
    [5] Birky CW, Fuerst P, Maruyama T. 1989. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121(3): 613−627.
    [6] Blank M, Bastrop R. 2009. Phylogeny of the mud worm genus Marenzelleria (Polychaeta, Spionidae) inferred from mitochondrial DNA sequences. Zoologica Scripta, 38(3): 313−321. doi:  10.1111/j.1463-6409.2008.00370.x
    [7] Chen X, Li M, Liu H, Li B, Guo L, Meng Z, Lin H. 2016. Mitochondrial genome of the polychaete Tylorrhynchus heterochaetus (Phyllodocida, Nereididae). Mitochondrial DNA Part A, 27(5): 3372−3373. doi:  10.3109/19401736.2015.1018226
    [8] Costa PFE, Gil J, Passos A M, Pereira P, Melo P, Batista F, Da Fonseca LC. 2006. The market features of imported non-indigenous polychaetes in Portugal and consequent ecological concerns. Scientia Marina, 70(S3): 287−292. doi:  10.3989/scimar.2006.70s3287
    [9] Cowen RK, Sponaugle S. 2009. Larval dispersal and marine population connectivity. Annual Review of Marine Science, 1: 443−466. doi:  10.1146/annurev.marine.010908.163757
    [10] Darling JA, Reitzel AM, Finnerty JR. 2004. Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Molecular Ecology, 13(10): 2969−2981. doi:  10.1111/j.1365-294X.2004.02313.x
    [11] Dean HK. 2008. The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Revista de Biologia Tropical, 56(4): 11−38.
    [12] Duan XH, Liu WS, Xu AY, Xu CH, He QT, Xiao RY, Pan G. 2017. Observation on embryonic development of Tylorrhynchus heterochaeta and effect of salinity on their hatching. South China Fisheries Science, 13(4): 115−121.
    [13] Excoffier L, Layal G, Schneider S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1: 47−50.
    [14] Fairbanks RG. 1989. A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deepocean circulation. Nature, 342(6250): 637−642. doi:  10.1038/342637a0
    [15] Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5): 294−299.
    [16] Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2): 915−925.
    [17] Gao X, Mu D, Lou J, Hou C, Zhu J, Wang J, Jin S. 2018. Genetic diversity and structure analysis of Phascolosoma esculenta in the coastal zone of south-eastern China based on mitochondrial Cyt b gene. Turkish Journal of Fisheries and Aquatic Sciences, 18(4): 519−528.
    [18] Glasby CJ, Timm T. 2008. Global diversity of polychaetes (Polychaeta; Annelida) in freshwater. Hydrobiologia, 595: 107−115. doi:  10.1007/s10750-007-9008-2
    [19] Grant WAS, Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89(5): 415−426. doi:  10.1093/jhered/89.5.415
    [20] Green BN, Suzuki T, Gotoh T, Kuchumov AR, Vinogradov SN. 1995. Electrospray ionization mass spectrometric determination of the complete polypeptide chain composition of Tylorrhynchus heterochaetus hemoglobin. Journal of Biological Chemistry, 270(31): 18209−18211. doi:  10.1074/jbc.270.31.18209
    [21] Harpending H. 1994. Signature of ancient population growth in a lowresolution mitochondrial DNA mismatch distribution. Human Biology, 66(4): 591−600.
    [22] Hebert PDN, Ratnasingham S, de Waard JR. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(S1): S96−S99.
    [23] Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR. 1992. On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography and Paleoceanography, 7(6): 701−738. doi:  10.1029/92PA02253
    [24] Jolly MT, Viard F, Gentil F, Thiébaut É, Jollivet D. 2006. Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Molecular Ecology, 15(7): 1841−1855. doi:  10.1111/j.1365-294X.2006.02910.x
    [25] Kaoawa Y. 1954. Histological Observations on the transformation to mature worms of Tylorrhynchus heterochaetus. Journal of Gakugei, Tokushima University, 4: 65−71.
    [26] Kesäniemi JE, Rawson PD, Lindsay SM, Knott KE. 2012. Phylogenetic analysis of cryptic speciation in the polychaete Pygospio elegans. Ecology and Evolution, 2(5): 994−1007. doi:  10.1002/ece3.226
    [27] Koizumi I, Tada R, Narita H, Irino T, Aramaki T, Oba T, Yamamoto H. 2006. Paleoceanographic history around the Tsugaru Strait between the Japan Sea and the Northwest Pacific Ocean since 30 cal kyr BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(1): 36−52. doi:  10.1016/j.palaeo.2005.09.003
    [28] Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi:  10.1093/molbev/msw054
    [29] Kyle CJ, Boulding EG. 2000. Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Marine Biology, 137(5-6): 835−845. doi:  10.1007/s002270000412
    [30] Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451−1452. doi:  10.1093/bioinformatics/btp187
    [31] Liu F, Guo QS, Shi HZ, Lv F, Yu YB, Lv LL. Huang JT, Wang AM, Liang HX. 2014. Genetic diversity analysis of Perinereis aibuhitensis based on ISSR and SRAP markers of Chinese coast populations. Biochemical Systematics and Ecology, 57: 262−269. doi:  10.1016/j.bse.2014.08.025
    [32] Liu H, Liu M, Ge S, Wang Q, Yu D, Guan S. 2012. Population structuring and historical demography of a common clam worm Perinereris aibuhitensis, near the coasts of Shandong Peninsula. Biochemical Systematics and Ecology, 44(4): 70−78.
    [33] Loeschcke V, Tomiuk J, Jain SK. 2013. Conservation genetics (Vol. 68. Basel: Birkhäuser, 37-53.
    [34] Méndez N, Linke-Gamenick I, Forbes VE, Baird DJ. 2001. Sediment processing in Capitella spp. (Polychaeta: Capitellidae): strain-specific differences and effects of the organic toxicant fluoranthene. Marine Biology, 138(2): 311−319. doi:  10.1007/s002270000440
    [35] Okada K. 1952. Experimental studies on the Japanese palolo, Tylorrhynchus heterochaetus. I. activation of egg-cells. Journal of Gakugei, Tokushima University, 2: 43−52.
    [36] Olson MA, Zajac RN, Russello MA. 2009. Estuarine-scale genetic variation in the polychaete Hobsonia florida (Ampharetidae; Annelida) in Long Island Sound and relationships to Pleistocene glaciations. The Biological Bulletin, 217(1): 86−94. doi:  10.1086/BBLv217n1p86
    [37] Pinsky ML, Palumbi SR. 2014. Meta-analysis reveals lower genetic diversity in overfished populations. Molecular Ecology, 23(1): 29−39. doi:  10.1111/mec.12509
    [38] Plouviez S, Shank TM, Faure B, Daguin-Thiebaut C, Viard F, Lallier FH, Jollivet D. 2009. Comparative phylogeography among hydrothermal vent species along the East Pacific Rise reveals vicariant processes and population expansion in the South. Molecular Ecology, 18(18): 3903−3917. doi:  10.1111/j.1365-294X.2009.04325.x
    [39] Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10): 564−571.
    [40] Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3): 552−569.
    [41] Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4): 406−425.
    [42] Sato M, Osanai K. 1990. Sperm attachment and acrosome reaction on the egg surface of the polychaete, Tylorrhynchus heterochaetus. The Biological Bulletin, 178(2): 101−110. doi:  10.2307/1541968
    [43] Selkoe KS, Toonen RJ. 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Marine Ecology Progress Series, 436: 291−305. doi:  10.3354/meps09238
    [44] Simon CA, Sato-Okoshi W. 2015. Polydorid polychaetes on farmed molluscs: distribution, spread and factors contributing to their success. Aquaculture Environment Interactions, 7(2): 147−166. doi:  10.3354/aei00138
    [45] Slatkin M, Hudson RR. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129(2): 555−562.
    [46] Smith LM, Hutchings P, Fraser CI. 2015. Molecular evidence supports coastal dispersal among estuaries for two benthic marine worm (Nephtyidae) species in southeastern Australia. Marine Biology, 162(6): 1319−1327. doi:  10.1007/s00227-015-2671-3
    [47] Suzuki T, Gotoh T. 1986. The complete amino acid sequence of giant multisubunit hemoglobin from the polychaete Tylorrhynchus heterochaetus. Journal of Biological Chemistry, 261(20): 9257−9267.
    [48] Suzuki T, Takagi T, Gotoh T. 1990. Primary structure of two linker chains of the extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus. Journal of Biological Chemistry, 265(21): 12168−12177.
    [49] Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585−595.
    [50] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876−4882. doi:  10.1093/nar/25.24.4876
    [51] Tuan NN. 2018. Biological characteristics and effects of salinity on reproductive activities of marine worm (Tylorrhynchus heterochaetus, Quatefages, 1865) in summer season in Hai Phong - Viet Nam. SNRU Journal of Science and Technology, 10(1): 25−31.
    [52] Virgilio M, Backeljau T, Abbiati M. 2006. Mitochondrial DNA and allozyme patterns of Hediste diversicolor (Polychaeta: Nereididae): the importance of small scale genetic structuring. Marine Ecology Progress Series, 326: 157−165. doi:  10.3354/meps326157
    [53] Voris HK. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27(5): 1153−1167. doi:  10.1046/j.1365-2699.2000.00489.x
    [54] Weersing K, Toonen RJ. 2009. Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series, 393: 1−12. doi:  10.3354/meps08287
    [55] Whiteley AR, Spruell P, Allendorf FW. 2006. Can common species provide valuable information for conservation?. Molecular Ecology, 15(10): 2767−2786. doi:  10.1111/j.1365-294X.2006.02972.x
    [56] Zakas C, Wares JP. 2012. Consequences of a poecilogonous life history for genetic structure in coastal populations of the polychaete Streblospio benedicti. Molecular Ecology, 21(22): 5447−5460. doi:  10.1111/mec.12040
    [57] Zardi GI, McQuaid CD, Teske PR, Teske PR, Barker NP. 2007. Unexpected genetic structure of mussel populations in South Africa: indigenous Perna perna and invasive Mytilus galloprovincialis. Marine Ecology Progress Series, 337: 135−144. doi:  10.3354/meps337135
  • [1] Zhong-Yuan Shen, Dan Yu, Xin Gao, Fu-Tie Zhang, Huan-Zhang Liu.  Genetic diversity and reproductive success of a wild population of Chinese sturgeon (Acipenser sinensis) from the Yangtze River inferred from juveniles born in 2014, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.011
    [2] Dong-Dong Zhai, Wen-Jing Li, Huan-Zhang Liu, Wen-Xuan Cao, Xin Gao.  Genetic diversity and temporal changes of an endemic cyprinid fish species, Ancherythroculter nigrocauda, from the upper reaches of Yangtze River, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.027
    [3] Jing Yang, Guo-Fen Zhu, Jian Jiang, Chang-Lin Xiang, Fu-Li Gao, Wei-Dong Bao.  Non-invasive genetic analysis indicates low population connectivity in vulnerable Chinese gorals: concerns for segregated population management, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.058
    [4] Jin-Jin MIN, Rong-Hui YE, Gen-Fang ZHANG, Rong-Quan ZHENG.  Microsatellite analysis of genetic diversity and population structure of freshwater mussel (Lamprotula leai), Zoological Research. doi: 10.13918/j.issn.2095-8137.2015.1.34
    [5] Ya HE, Zheng-Huan WANG, Xiao-Ming WANG.  Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.528
    [6] Xing-Jian YUE, Shao-Ping LIU, Ming-Dian LIU, Xin-Bin DUAN, Deng-Qiang WANG, Da-Qing CHEN.  Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.4.0392
    [7] ZHENG Wen-Juan, LAI Yu-Hong, YOU Xin-Yu, QIN Xi-Han, ZHU Shi-Hua.  Genetic diversity of Pseudosciaena polyactis in Zhoushan based on mitochondrial DNA D-loop region sequences, Zoological Research. doi: 10.3724/SP.J.1141.2012.03329
    [8] Zhiying JIA, Yuyong ZHANG, Shuqiang CHEN, Lianyu SHI.  Genetic diversity and differentiation of masu salmon (Oncorhynchus masou masou) between and within cultured populations inferred from microsatellite DNA analysis, Zoological Research. doi: 10.3724/SP.J.1141.2012.E03-04E33
    [9] CHEN Shi-Yi, XU Ling, Lü Long-Bao, YAO Yong-Gang.  Genetic diversity and matrilineal structure in Chinese tree shrews inhabiting Kunming, China, Zoological Research. doi: 10.3724/SP.J.1141.2011.01017
    [10] LI Ou, ZHAO Ying-ying, GUO Na, LU Cui-yun, SUN Xiao-wen.  Effects of Sample Size and Loci Number on Genetic Diversity in Wild Population of Grass Carp Revealed by SSR, Zoological Research. doi: 10.3724/SP.J.1141.2009.02121
    [11] QI De-lin.  Genetic Variation and Diversity of Gymncypris eckloni in the Upper Yellow River Inferred from Mitochondrial Cytochrome b Gene, Zoological Research. doi: 10.3724/SP.J.1141.2009.03255
    [12] LIU Yan-hua, ZHANG Ming-hai.  Population Genetic Diversity of Roe Deer (Capreolus pygargus) in Mountains of Heilongjiang Province, Zoological Research. doi: 10.3724/SP.J.1141.2009.02113
    [13] LIU Qing-shen, FENG Ding-yuan, ZHANG Hui-ming, LIU Shen-fu.  Genetic Diversity of Chinese Shar-pei Dog Using Microsatellite DNA Markers, Zoological Research.
    [14] YANG Bo, CHEN Xiao-yong, YANG Jun-xing.  Structure of the Mitochondrial DNA Control Region and Population Genetic Diversity Analysis of Anabarilius grahami (Regan), Zoological Research. doi: 10.3724/SP.J.1141.2008.04379
    [15] ZHU Shi-hua, ZHENG Wen-juan, ZOU Ji-xing, YANG Ying-chun, SHEN Xi-quan.  Mitochondrial DNA Control Region Structure and MolecularPhylogenetic Relationship of Carangidae, Zoological Research.
    [16] YE Lang-hui HUO Jin-long MIAO Yong-wang , * ZHU Sheng-quan CHEN Tao LIU Li-xian PAN Wei-rong BI Bao-liang.  Genetic Diversity Analysis of Nixi Chicken Using Microsatellite DNA Markers, Zoological Research.
    [17] ZHOU Li, LIU Jin-Xia, GUI Jian-Fang.  Preliminary Investigation on Genetic Diversity of Gynogenetic Silver Crucian Carp (Carassius auratus gibelio Bloch) Detected by Microsatellite DNA, Zoological Research.
    [18] ZHUANG Zhi-meng, MENG Xian-hong, QUAN Jie-xia, DAI Ji-xun, DENG Jing-yao.  Genetic Diversity in The Wild Population and Hatchery Stock of Penaeus japonicus Shrimp by Isoenzyme Analysis, Zoological Research.
    [19] ZHANG Sheng-qiao, XU Ji-chu, ZHANG Ya-ping, FU Yan, CHEN Yong-jiu.  Genetic Diversity of Zhejiang Native Pig Breeds Inferred From Mitochondrial DNA Polymorphism, Zoological Research.
    [20] LI Xiang-long, ZHANG Ya-ping, CHEN Shen-gou, ZENG Fan-tong, QIU Xiang-pin, LIU Xiang-mo.  Study on The mtDNA Rflp of Goat Breeds, Zoological Research.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1706
  • HTML全文浏览量:  211
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回