留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?

Yong-Gang Yao

Yong-Gang Yao. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 2017, 38(3): 118-126. doi: 10.24272/j.issn.2095-8137.2017.032
Citation: Yong-Gang Yao. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 2017, 38(3): 118-126. doi: 10.24272/j.issn.2095-8137.2017.032

创制动物模型,为何不用树鼩呢?

doi: 10.24272/j.issn.2095-8137.2017.032
详细信息
    通讯作者:

    Yong-Gang Yao,E-mail:yaoyg@mail.kiz.ac.cn

Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?

Funds: This study was supported by the grant of the National Natural Science Foundation of China (NSFC U1402224) and the Chinese Academy of Sciences (CAS zsys-02)
More Information
    Corresponding author: Yong-Gang Yao,E-mail:yaoyg@mail.kiz.ac.cn
  • 摘要: 中缅树鼩(Tupaia belangeri chinensis)是一种外形酷似松鼠、只有大鼠大小的哺乳动物,广泛分布于我国的华南和西南地区以及东南亚。它具有许多独特的特征,适合用作实验动物。目前已经有若干关于树鼩(Tupaia belangeri)的研究,这些研究增加了我们对其基础生物学机制的理解,并用其建立了一些人类疾病和治疗反应的动物模型。最近公开发布的中国树鼩的注释基因组序列及其基因组数据库(www.treeshrewdb.org),提供了一个坚实的平台,从中可以阐明树鼩基本的生物学特性,并使用该物种创建动物模型。针对树鼩免疫和神经系统的关键因子和信号通路的分析表明,相对于灵长类动物而言,树鼩兼具保守性和独特性。迄今为止,树鼩已经成功地用于制造近视、抑郁症、乳腺癌、酒精诱导或非酒精性脂肪肝疾病、I型单纯疱疹病毒(HSV-1)和丙型肝炎病毒(HCV)感染等的动物模型。最近树鼩的遗传操作技术的成功创建,为这种动物在生物医学研究中的广泛应用开辟了新的途径。本文中,本人试图总结近年来关于中国树鼩的研究进展,重点关注:1) 通过树鼩基因组挖掘分析获得其生物学特性的新知识,2) 基于基因组信息指导的方法创制动物模型的建议,3) 以及树鼩的遗传操作。随着更多的研究使用这种物种和应用最前沿的基因编辑技术,树鼩作为新型实验动物,将会用于许多人类疾病的基础研究与疾病动物模型创建。
  • [1] Amako Y, Tsukiyama-Kohara K, Katsume A, Hirata Y, Sekiguchi S, Tobita Y, Hayashi Y, Hishima T, Funata N, Yonekawa H, Kohara M. 2010. Pathogenesis of hepatitis C virus infection in Tupaia belangeri. Journal of Virology, 84(1):303-311.
    [2] Barbalat R, Ewald SE, Mouchess ML, Barton GM. 2011. Nucleic acid recognition by the innate immune system. Annual Review of Immunology, 29(1):185-214.
    [3] Bennett AJ, Panicker S. 2016. Broader impacts:international implications and integrative ethical consideration of policy decisions about US chimpanzee research. American Journal of Primatology, 78(12):1282-1303.
    [4] Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews:adjuncts and alternatives to primates as models for biomedical research. Journal of Medical Primatology, 32(3):123-130.
    [5] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121):819-823.
    [6] Darai G, Schwaier A, Komitowski D, Munk K. 1978. Experimental infection of Tupaia belangeri (tree shrews) with herpes simplex virus types 1 and 2. Journal of Infectious Diseases, 137(3):221-226.
    [7] Elliot OS, Elliot MW, Lisco H. 1966. Breast cancer in a tree shrew (Tupaia glis). Nature, 211(5053):1105.
    [8] Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao YG. 2013. Genome of the Chinese tree shrew. Nature Communications, 4:1426.
    [9] Fan Y, Yao YG. 2014. Chapter 3. Characteristics of the genome of the Chinese tree shrew. In:Zheng YT, Yao YG, Xu L. Basic Biology and Disease Models of Tree Shrews. Kunming:Yunnan Science and Technology Press, 32-75. (in Chinese)
    [10] Fan Y, Yu D, Yao YG. 2014a. Tree shrew database (TreeshrewDB):a genomic knowledge base for the Chinese tree shrew. Scientific Reports, 4:7145.
    [11] Fan Y, Yu DD, Yao YG. 2014b. Positively selected genes of the Chinese tree shrew (Tupaia belangeri chinensis) locomotion system. Zoological Research, 35(3):240-248.
    [12] Fang H, Sun YJ, Lv YH, Ni RJ, Shu YM, Feng XY, Wang Y, Shan QH, Zu YN, Zhou JN. 2016. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Scientific Reports, 6:24905.
    [13] Fitzpatrick D. 1996. The functional organization of local circuits in visual cortex:insights from the study of tree shrew striate cortex. Cerebral Cortex, 6(3):329-341.
    [14] Franco NH. 2013. Animal experiments in biomedical research:a historical perspective. Animals, 3(1):238-273.
    [15] Fuchs E. 2005. Social stress in tree shrews as an animal model of depression:an example of a behavioral model of a CNS disorder. CNS Spectrums, 10(3):182-190.
    [16] Ge GZ, Xia HJ, He BL, Zhang HL, Liu WJ, Shao M, Wang CY, Xiao J, Ge F, Li FB, Li Y, Chen CS. 2016. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution. International Journal of Cancer, 138(3):642-651.
    [17] Grillner S, Ip N, Koch C, Koroshetz W, Okano H, Polachek M, Poo MM, Sejnowski TJ. 2016. Worldwide initiatives to advance brain research. Nature Neuroscience, 19(9):1118-1122.
    [18] Guo XY, Li XJ. 2015. Targeted genome editing in primate embryos. Cell Research, 25(7):767-768.
    [19] Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6):1262-1278.
    [20] Hunt DM, Dulai KS, Cowing JA, Julliot C, Mollon JD, Bowmaker JK, Li WH, Hewett-Emmett D. 1998. Molecular evolution of trichromacy in primates. Vision Research, 38(21):3299-3306.
    [21] Khani A, Rainer G. 2012. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behavioural Processes, 90(3):364-371.
    [22] Knight A. 2008. The beginning of the end for chimpanzee experiments? Philosophy, Ethics, and Humanities in Medicine, 3:16.
    [23] Lee KS, Huang XY, Fitzpatrick D. 2016. Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature, 533(7601):90-94.
    [24] Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, Bi R, Ji S, Ma YH, Nie WH, Lv LB, Yao YG, Zhao XD, Zheng P. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2):241-252.
    [25] Li LH, Li ZR, Wang EL, Yang R, Xiao Y, Han HB, Lang FC, Li X, Xia YJ, Gao F, Li QH, Fraser NW, Zhou JM. 2016. Herpes simplex virus 1 infection of tree shrews differs from that of mice in the severity of acute infection and viral transcription in the peripheral nervous system. Journal of Virology, 90(2):790-804.
    [26] Li RX, Xu W, Wang Z, Liang B, Wu JR, Zeng R. 2012. Proteomic characteristics of the liver and skeletal muscle in the Chinese tree shrew(Tupaia belangeri chinensis). Protein & Cell, 3(9):691-700.
    [27] Lin JN, Chen GF, Gu L, Shen YF, Zheng MZ, Zheng WS, Hu XJ, Zhang XB, Qiu Y, Liu XQ, Jiang CZ. 2014. Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate. Molecular Phylogenetics and Evolution, 71:193-200.
    [28] Luo X, Li M, Su B. 2016. Application of the genome editing tool CRISPR/Cas9 in non-human primates. Zoological Research, 37(4):214-219.
    [29] MacEvoy SP, Tucker TR, Fitzpatrick D. 2009. A precise form of divisive suppression supports population coding in the primary visual cortex. Nature Neuroscience, 12(5):637-645.
    [30] McGonigle P, Ruggeri B. 2014. Animal models of human disease:challenges in enabling translation. Biochemical Pharmacology, 87(1):162-171.
    [31] Mei Y, Wang Y, Chen HQ, Sun ZS, Ju XD. 2016. Recent progress in CRISPR/Cas9 technology. Journal of Genetics and Genomics, 43(2):63-75.
    [32] Mooser F, Bosking WH, Fitzpatrick D. 2004. A morphological basis for orientation tuning in primary visual cortex. Nature Neuroscience, 7(8):872-879.
    [33] Muly EC, Fitzpatrick D. 1992. The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex. Journal of Neuroscience, 12(4):1319-1334.
    [34] Nair J, Topka M, Khani A, Isenschmid M, Rainer G. 2014. Tree shrews(Tupaia belangeri) exhibit novelty preference in the novel location memory task with 24-h retention periods. Frontiers in Psychology, 5:303.
    [35] Ni RJ, Shu YM, Wang J, Yin JC, Xu L, Zhou JN. 2014. Distribution of vasopressin, oxytocin and vasoactive intestinal polypeptide in the hypothalamus and extrahypothalamic regions of tree shrews. Neuroscience, 265:124-136.
    [36] Ni RJ, Shu YM, Luo PH, Fang H, Wang Y, Yao L, Zhou JN. 2015. Immunohistochemical mapping of neuropeptide Y in the tree shrew brain. Journal of Comparative Neurology, 523(3):495-529.
    [37] Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H, Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ, Sha JH. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4):836-843.
    [38] O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL. 2013. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science, 339(6120):662-667.
    [39] Pawlik M, Fuchs E, Walker LC, Levy E. 1999. Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiology of Aging, 20(1):47-51.
    [40] Peng YZ, Ye ZZ, Zou RJ, Wang YX, Tian BP, Ma YY, Shi LM. 1991. Biology of Chinese Tree Shrews. Kunming:Yunnan Science and Technology Press.(in Chinese)
    [41] Petruzziello F, Fouillen L, Wadensten H, Kretz R, Andren PE, Rainer G, Zhang XZ. 2012. Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach. Journal of Proteome Research, 11(2):886-896.
    [42] Pryce CR, Fuchs E. 2017. Chronic psychosocial stressors in adulthood:studies in mice, rats and tree shrews. Neurobiology of Stress, 6:94-103.
    [43] Shao M, Xu TR, Chen CS. 2016. The big bang of genome editing technology:development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 37(4):191-204.
    [44] Song S, Liu L, Edwards SV, Wu SY. 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of the National Academy of Sciences of the United States of America, 109(37):14942-14947.
    [45] Su JJ, Yan QR, Gan YQ, Zhou DN, Huang DR, Huang GH. 1987. Experimental infection of human hepatitis B virus (HBV) in adult tree shrews. Chinese Journal of Pathology, 16(2):103-106. (in Chinese)
    [46] Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell, 140(6):805-820.
    [47] van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR. 2010. Can animal models of disease reliably inform human studies? PLoS Medicine, 7(3):e1000245.
    [48] Van Hooser SD, Roy A, Rhodes HJ, Culp JH, Fitzpatrick D. 2013. Transformation of receptive field properties from lateral geniculate nucleus to superficial V1 in the tree shrew. Journal of Neuroscience, 33(28):11494-11505.
    [49] Veit J, Bhattacharyya A, Kretz R, Rainer G. 2011. Neural response dynamics of spiking and local field potential activity depend on CRT monitor refresh rate in the tree shrew primary visual cortex. Journal of Neurophysiology, 106(5):2303-2313.
    [50] Veit J, Bhattacharyya A, Kretz R, Rainer G. 2014. On the relation between receptive field structure and stimulus selectivity in the tree shrew primary visual cortex. Cerebral Cortex, 24(10):2761-2771.
    [51] Walter E, Keist R, Niederöst B, Pult I, Blum HE. 1996. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology, 24(1):1-5.
    [52] Wang LR, Shao YJ, Guan YT, Li L, Wu LJ, Chen FR, Liu MZ, Chen HQ, Ma YL, Ma XY, Liu MY, Li DL. 2015. Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Scientific Reports, 5:17517.
    [53] Xia HJ, Wang CY, Zhang HL, He BL, Jiao JL, Chen CS. 2012. Characterization of spontaneous breast tumor in tree shrews (Tupaia belangeri chinenesis). Zoological Research, 33(1):55-59.
    [54] Xia HJ, He BL, Wang CY, Zhang HL, Ge GZ, Zhang YX, Lv LB, Jiao JL, Chen CS. 2014. PTEN/PIK3CA genes are frequently mutated in spontaneous and medroxyprogesterone acetate-accelerated 7, 12-dimethylbenz(a)anthracene-induced mammary tumours of tree shrews. European Journal of Cancer, 50(18):3230-3242.
    [55] Xing HJ, Jia K, He J, Shi CZ, Fang MX, Song LL, Zhang P, Zhao Y, Fu JN, Li SJ. 2015. Establishment of the tree shrew as an alcohol-induced Fatty liver model for the study of alcoholic liver diseases. PLoS One, 10(6):e0128253.
    [56] Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. 2012. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome:implication for using tree shrew as an alternative experimental animal to primates in biomedical research. Journal of Genetics and Genomics, 39(3):131-137.
    [57] Xu L, Fan Y, Jiang XL, Yao YG. 2013a. Molecular evidence on the phylogenetic position of tree shrews. Zoological Research, 34(2):70-76. (in Chinese)
    [58] Xu L, Zhang Y, Liang B, Lü LB, Chen CS, Chen YB, Zhou JM, Yao YG. 2013b. Tree shrews under the spot light:emerging model of human diseases. Zoological Research, 34(2):59-69. (in Chinese)
    [59] Xu L, Yu DD, Fan Y, Peng L, Wu Y, Yao YG. 2016. Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proceedings of the National Academy of Sciences of the United States of America, 113(39):10950-10955.
    [60] Xu XP, Chen HB, Cao XM, Ben KL. 2007. Efficient infection of tree shrew(Tupaia belangeri) with hepatitis C virus grown in cell culture or from patient plasma. Journal of General Virology, 88(9):2504-2512.
    [61] Yamashita A, Fuchs E, Taira M, Hayashi M. 2010. Amyloid beta (Aβ) protein-and amyloid precursor protein (APP)-immunoreactive structures in the brains of aged tree shrews. Current Aging Science, 3(3):230-238.
    [62] Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. 2012. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. Journal of Medical Primatology, 41(3):147-157.
    [63] Yan H, Zhong GC, Xu GW, He WH, Jing ZY, Gao ZC, Huang Y, Qi YH, Peng B, Wang HM, Fu LR, Song M, Chen P, Gao WQ, Ren BJ, Sun YY, Cai T, Feng XF, Sui JH, Li WH. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife, 1:e00049.
    [64] Yan LZ, Sun B, Lyu LB, Ma YH, Chen JQ, Lin Q, Zheng P, Zhao XD. 2016. Early embryonic development and transplantation in tree shrews. Zoological Research, 37(4):252-258.
    [65] Yan RQ, Su JJ, Huang DR, Gan YC, Yang C, Huang GH. 1996. Human hepatitis B virus and hepatocellular carcinoma I. Experimental infection of tree shrews with hepatitis B virus. Journal of Cancer Research and Clinical Oncology, 122(5):283-288.
    [66] Yao YG, Chen YB, Liang B. 2015. The 3rd symposium on animal models of primates-the application of non-human primates to basic research and translational medicine. Journal of Genetics and Genomics, 42(6):339-341.
    [67] Yu DD, Wu Y, Xu L, Fan Y, Peng L, Xu M, Yao YG. 2016. Identification and characterization of toll-like receptors (TLRs) in the Chinese tree shrew(Tupaia belangeri chinensis). Developmental & Comparative Immunology, 60:127-138.
    [68] Zhang LQ, Zhang ZG, Li YH, Liao SS, Wu XY, Chang Q, Liang B. 2015. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Scientific Reports, 5:15970.
    [69] Zhang LQ, Wu XY, Liao SS, Li YH, Zhang ZG, Chang Q, Xiao RY, Liang B. 2016. Tree shrew (Tupaia belangeri chinensis), a novel non-obese animal model of non-alcoholic fatty liver disease. Biology Open, 5(10):1545-1552.
    [70] Zhang XL, Pang W, Hu XT, Li JL, Yao YG, Zheng YT. 2014. Experimental primates and non-human primate (NHP) models of human diseases in China:current status and progress. Zoological Research, 35(6):447-464.
    [71] Zhao F, Guo XL, Wang YJ, Liu J, Lee WH, Zhang Y. 2014. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing. PLoS One, 9(8):e104191.
    [72] Zhao XP, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsäcker F, Blum HE, Baumert TF. 2002. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. Journal of Clinical Investigation, 109(2):221-232.
    [73] Zheng YT, Yao YG, Xu L. 2014. Basic Biology and Disease Models of Tree Shrews. Kunming:Yunnan Science and Technology Press, 1-475. (in Chinese)
    [74] Zhou XM, Sun FM, Xu SX, Yang G, Li M. 2015. The position of tree shrews in the mammalian tree:comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful. Integrative Zoology, 10(2):186-198.
  • [1] Gary Wong, Xiang-Guo Qiu.  Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.052
    [2] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.   Animal models for the study of hepatitis B virus infection, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.013
    [3] Gary Wong, Wen-Guang Cao, Shi-Hua He, Zi-Rui Zhang, Wen-Jun Zhu, Estella Moffat, Hideki Ebihara, Carissa Embury-Hyatt, Xiang-Guo Qiu.  Development and characterization of a guinea pig model for Marburg virus, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.054
    [4] Ji Xiao, Rong Liu, Ce-Shi Chen.  Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.033
    [5] Li-Ping Jiang, Qiu-Shuo Shen, Cui-Ping Yang, Yong-Bin Chen.  Establishment of basal cell carcinoma animal model in Chinese tree shrew (Tupaia belangeri chinensis), Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.045
    [6] Lei CHEN, Gui WANG, Ya-Nan ZHU, Hui XIANG, Wen WANG.  Advances and perspectives in the application of CRISPR/Cas9 in insects, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.4.220
    [7] Ming GUO, Wen-Zhe HO.  Animal models to study Mycobacterium tuberculosis and HIV co-infection, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.163
    [8] Yu FAN, Dan-Dan YU, Yong-Gang YAO.  Positively selected genes of the Chinese tree shrew (Tupaia belangeri chinensis) locomotion system, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.240
    [9] Xiao-Hong LIU, Yong-Gang YAO.  Characterization of 12 polymorphic microsatellite markers in the Chinese tree shrew (Tupaia belangeri chinensis), Zoological Research. doi: 10.3724/SP.J.1141.2013.E02E62
    [10] GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo.  Glaucoma model for stem cell transplantation research in New Zealand white rabbits, Zoological Research. doi: 10.3724/SP.J.1141.2012.02225
    [11] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong.  Animal models of human glioma: the progress of application and investigation, Zoological Research. doi: 10.3724/SP.J.1141.2012.03337
    [12] CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y.  Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis, Zoological Research. doi: 10.3724/SP.J.1141.2011.01040
    [13] LI Yuan, SU Jian-Jia, YANG Chun, CAO Ji, OU Chao, LIANG Liang, YANG Fang, WANG.  Progress on establishment of tree shrew(Tupaia) chronic infection with HBV in vivo, Zoological Research. doi: 10.3724/SP.J.1141.2011.01104
    [14] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan.  Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model, Zoological Research. doi: 10.3724/SP.J.1141.2011.01097
    [15] SHEN Pei-Qing, ZHENG Hong, LIU Ru-Wen, CHEN Li-Ling, LI Bo, HE Bao-Li, LI Jin-Tao, BE.  Progress and prospect in research on laboratory tree shrew in China, Zoological Research. doi: 10.3724/SP.J.1141.2011.01109
    [16] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang.  Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides, Zoological Research. doi: 10.3724/SP.J.1141.2010.01066
    [17] WANG Yi-Peng, LAI Ren.  Insect Antimicrobial Peptides: Structures, Properties and Gene Regulation, Zoological Research. doi: 10.3724/SP.J.1141.2010.01027
    [18] ZHANG Gao-hong, CHEN Ya-li, TANG Hong, ZHENG Yong-tang.  Humanized SCID Mouse:A Small Animal Model for HIV Research, Zoological Research.
    [19] GUO Ren, CHEN Shu-fan, LUO Qi-sheng, WANG Qing-ling, YI Hong-kun, ZHAN Qiong-fen.  Transgenic Mice as A Model For Neurovirulence Test of Live Poliomyelitis Vaccines, Zoological Research.
    [20] HUANG Hai, BEN Kun-long, ZHENG Yong-tang.  Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome, Zoological Research.
  • 加载中
计量
  • 文章访问数:  947
  • HTML全文浏览量:  77
  • PDF下载量:  1286
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-08
  • 修回日期:  2017-04-10
  • 刊出日期:  2017-05-18

Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?

doi: 10.24272/j.issn.2095-8137.2017.032
    基金项目:  This study was supported by the grant of the National Natural Science Foundation of China (NSFC U1402224) and the Chinese Academy of Sciences (CAS zsys-02)
    通讯作者: Yong-Gang Yao,E-mail:yaoyg@mail.kiz.ac.cn

摘要: 中缅树鼩(Tupaia belangeri chinensis)是一种外形酷似松鼠、只有大鼠大小的哺乳动物,广泛分布于我国的华南和西南地区以及东南亚。它具有许多独特的特征,适合用作实验动物。目前已经有若干关于树鼩(Tupaia belangeri)的研究,这些研究增加了我们对其基础生物学机制的理解,并用其建立了一些人类疾病和治疗反应的动物模型。最近公开发布的中国树鼩的注释基因组序列及其基因组数据库(www.treeshrewdb.org),提供了一个坚实的平台,从中可以阐明树鼩基本的生物学特性,并使用该物种创建动物模型。针对树鼩免疫和神经系统的关键因子和信号通路的分析表明,相对于灵长类动物而言,树鼩兼具保守性和独特性。迄今为止,树鼩已经成功地用于制造近视、抑郁症、乳腺癌、酒精诱导或非酒精性脂肪肝疾病、I型单纯疱疹病毒(HSV-1)和丙型肝炎病毒(HCV)感染等的动物模型。最近树鼩的遗传操作技术的成功创建,为这种动物在生物医学研究中的广泛应用开辟了新的途径。本文中,本人试图总结近年来关于中国树鼩的研究进展,重点关注:1) 通过树鼩基因组挖掘分析获得其生物学特性的新知识,2) 基于基因组信息指导的方法创制动物模型的建议,3) 以及树鼩的遗传操作。随着更多的研究使用这种物种和应用最前沿的基因编辑技术,树鼩作为新型实验动物,将会用于许多人类疾病的基础研究与疾病动物模型创建。

English Abstract

姚永刚. 创制动物模型,为何不用树鼩呢?[J]. 动物学研究, 2017, 38(3): 118-126. doi: 10.24272/j.issn.2095-8137.2017.032
引用本文: 姚永刚. 创制动物模型,为何不用树鼩呢?[J]. 动物学研究, 2017, 38(3): 118-126. doi: 10.24272/j.issn.2095-8137.2017.032
Yong-Gang Yao. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 2017, 38(3): 118-126. doi: 10.24272/j.issn.2095-8137.2017.032
Citation: Yong-Gang Yao. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 2017, 38(3): 118-126. doi: 10.24272/j.issn.2095-8137.2017.032
参考文献 (74)

目录

    /

    返回文章
    返回