留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging

Shu Wei Hai-Rong Hua Qian-Quan Chen Ying Zhang Fei Chen Shu-Qing Li Fan Li Jia-Li Li

Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013
Citation: Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013

树鼩大脑发育和老化过程中DNA去甲基化修饰的动态变化特征

doi: 10.24272/j.issn.2095-8137.2017.013
详细信息
    通讯作者:

    Fan Li, Jia-Li Li

Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging

Funds: This work was supported by the Hundred-Talent Program of Chinese Academy of Sciences (Y406541141; 1100050210) to J.L., the National Natural Science Foundation of China (81471313; 91649119) to J.L., the National Science and Technology Infrastructure Program (2014BAI01B01-04) to S.L., and the National Natural Science Foundation of China (31260242 to) F.L.
More Information
    Corresponding author: Fan Li, Jia-Li Li
  • 摘要: 大脑的发育生长和老化过程与多个表观遗传调控系统密切相关。其中就包括DNA甲基化和去甲基化的动态变化。在本研究中,我们观察了在树鼩大脑发育生长和老化过程中TET家族酶介导的DNA去甲基化中间产物5-羟甲基化胞嘧啶(5hmC)的动态变化特征和潜在的影响作用。结果表明,在树鼩大脑发育生长过程中,5hmC水平主要表现为渐进性升高;在大脑老化过程中,多个脑区包括新皮层的前额叶、顶叶、枕叶和海马的神经元内5hmC出现显著地减低,但是这一现象并没有显著地发生在小脑区域。进一步研究发现,TET家族酶TET2号TET3的表达水平变化与5hmC变化一致,推测它们的表达和功能变化可能是决定5hmC动态变化的关键因素。我们的研究揭示了树鼩大脑发育和老化过程中5hmC的变化具有明显地时空特异性,为下一步利用树鼩对象,探讨脑发育和老化的机理、以及神经系统疾病的相关科学问题提供了新的方向。
  • [1] Abel T, Zukin RS. 2008. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8(1):57-64.
    [2] Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. 2013. Loss of HDAC5 impairs memory function:implications for Alzheimer's disease. Journal of Alzheimer's Disease, 33(1):35-44.
    [3] Alagiakrishnan K, Gill SS, Fagarasanu A. 2012. Genetics and epigenetics of Alzheimer's disease. Postgraduate Medical Journal, 88(1043):522-529.
    [4] Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, Johnson AD, Gering M, Ruzov A. 2012a. 5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics, 7(4):383-389.
    [5] Almeida RD, Sottile V, Loose M, De Sousa PA, Johnson AD, Ruzov A. 2012b. Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics, 7(2):137-140.
    [6] Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H. 2012. Alzheimer's disease and environmental exposure to lead:the epidemiologic evidence and potential role of epigenetics. Current Alzheimer Research, 9(5):563-573.
    [7] Ballestar E, Yusufzai TM, Wolffe AP. 2000. Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry, 39(24):7100-7106.
    [8] Barbash S, Soreq H. 2012. Threshold-independent meta-analysis of Alzheimer's disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation. Current Alzheimer Research, 9(4):425-435.
    [9] Bihaqi SW, Schumacher A, Maloney B, Lahiri DK, Zawia NH. 2012. Do epigenetic pathways initiate late onset Alzheimer disease (LOAD):towards a new paradigm. Current Alzheimer Research, 9(5):574-588.
    [10] Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews:adjuncts and alternatives to primates as models for biomedical research. Journal of Medical Primatology, 32(3):123-130.
    [11] Chaudhry MA, Omaruddin RA. 2012. Differential DNA methylation alterations in radiation-sensitive and-resistant cells. DNA and Cell Biology, 31(6):908-916.
    [12] Chia N, Wang L, Lu XY, Senut MC, Brenner CA, Ruden DM. 2011. Hypothesis:environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics, 6(7):853-856.
    [13] Coppieters N, Dragunow M. 2011. Epigenetics in Alzheimers disease:a focus on DNA modifications. Current Pharmaceutical Design, 17(31):3398-3412.
    [14] Dahl C, Grønbæk K, Guldberg P. 2011. Advances in DNA methylation:5-hydroxymethylcytosine revisited. Clinica Chimica Acta, 412(11-12):831-836.
    [15] Davis T, Vaisvila R. 2011. High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue. Journal of Visualized Experiments, (48):2661.
    [16] Deaton AM, Bird A. 2011. CpG islands and the regulation of transcription. Genes & Development, 25(10):1010-1022.
    [17] Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao YG. 2013. Genome of the Chinese tree shrew. Nature Communications, 4:1426.
    [18] Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. 2010. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 5(12):e15367.
    [19] Guo JU, Su YJ, Zhong C, Ming GL, Song HJ. 2011. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3):423-434.
    [20] Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S. 2011. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget, 2(8):627-637.
    [21] Hansen JC, Ghosh RP, Woodcock CL. 2010. Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life, 62(10):732-738.
    [22] He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 333(6047):1303-1307.
    [23] Hutnick LK, Golshani P, Namihira M, Xue ZG, Matynia A, Yang XW, Silva AJ, Schweizer FE, Fan GP. 2009. DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Human Molecular Genetics, 18(15):2875-2888.
    [24] Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310):1129-1133.
    [25] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047):1300-1303.
    [26] Jiang DW, Zhang Y, Hart RP, Chen JM, Herrup K, Li JL. 2015. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain, 138(12):3520-3536.
    [27] Jiang DW, Wei S, Chen F, Zhang Y, Li JL. 2017. TET3-mediated DNA oxidation promotes ATR-dependent DNA damage response. EMBO Reports, doi: 10.15252/embr.201643179.
    [28] Jin SG, Wu XW, Li AX, Pfeifer GP. 2011. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Research, 39(12):5015-5024.
    [29] Kinney SRM, Pradhan S. 2013. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer. In:Karpf AR. Epigenetic Alterations in Oncogenesis:Advances in Experimental Medicine and Biology. New York:Springer, 754:57-79.
    [30] Konsoula Z, Barile FA. 2012. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. Journal of Pharmacological and Toxicological Methods, 66(3):215-220.
    [31] Kraus TFJ, Globisch D, Wagner M, Eigenbrod S, Widmann D, Münzel M, Müller M, Pfaffeneder T, Hackner B, Feiden W, Schüller U, Carell T, Kretzschmar HA. 2012. Low values of 5-hydroxymethylcytosine (5hmC), the "sixth base," are associated with anaplasia in human brain tumors. International Journal of Cancer, 131(7):1577-1590.
    [32] Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929):929-930.
    [33] Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H, Nagae G, Yoshida H, Aburatani H, Koike K. 2012. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Science, 103(4):670-676.
    [34] Kwok JBJ. 2010. Role of epigenetics in Alzheimer's and Parkinson's disease. Epigenomics, 2(5):671-682.
    [35] Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, Bi R, Ji S, Ma YH, Nie WH, Lv LB, Yao YG, Zhao XD, Zheng P. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2):241-252.
    [36] Li WW, Liu M. 2011. Distribution of 5-hydroxymethylcytosine in different human tissues. Journal of Nucleic Acids, 2011:870726.
    [37] Lian CG, Xu YF, Ceol C, Wu FZ, Larson A, Dresser K, Xu WQ, Tan L, Hu YG, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang Y, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC Jr, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG. 2012. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell, 150(6):1135-1146.
    [38] Maekawa M, Watanabe Y. 2007. Epigenetics:relations to disease and laboratory findings. Current Medicinal Chemistry, 14(25):2642-2653.
    [39] Malzkorn B, Wolter M, Riemenschneider MJ, Reifenberger G. 2011. Unraveling the glioma epigenome-from molecular mechanisms to novel biomarkers and therapeutic targets. Brain Pathology, 21(6):619-632.
    [40] Marques SCF, Oliveira CR, Pereira CM, Outeiro TF. 2011. Epigenetics in neurodegeneration:a new layer of complexity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2):348-355.
    [41] Rockland KS, Lund JS. 1982. Widespread periodic intrinsic connections in the tree shrew visual cortex. Science, 215(4539):1532-1534.
    [42] Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. 2011. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 29(1):68-72.
    [43] Szulwach KE, Li XK, Li YJ, Song CX, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey AI, Vasanthakumar A, Godley LA, Chang Q, Cheng XD, He C, Jin P. 2011. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14(12):1607-1616.
    [44] Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H. 2010. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Research, 38(19):e181.
    [45] Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929):930-935.
    [46] Urdinguio RG, Sanchez-Mut JV, Esteller M. 2009. Epigenetic mechanisms in neurological diseases:genes, syndromes, and therapies. The Lancet Neurology, 8(11):1056-1072.
    [47] Wilson VL, Smith RA, Ma S, Cutler RG. 1987. Genomic 5-methyldeoxycytidine decreases with age. The Journal of Biological Chemistry, 262(21):9948-9951.
    [48] Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. 2012. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome:implication for using tree shrew as an alternative experimental animal to primates in biomedical research. Journal of Genetics and Genomics, 39(3):131-137.
    [49] Zhang L, Lu XY, Lu JY, Liang HH, Dai Q, Xu GL, Luo C, Jiang HL, He C. 2012. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chemical Biology, 8(4):328-330.
  • [1] Lan-Zhen YAN, Bin SUN, Long-Bao LYU, Yu-Hua MA, Jia-Qi CHEN, Qing LIN, Ping ZHENG, Xu-Dong ZHAO.  Early embryonic development and transplantation in tree shrews, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.4.252
    [2] Jian-Ping LI, Yun LIAO, Ying ZHANG, Jing-Jing WANG, Li-Chun WANG, Kai FENG, Qi-Han LI, Long-Ding LIU.  Experimental infection of tree shrews(Tupaia belangeri) with Coxsackie virus A16, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.485
    [3] Gui LI, Ren LAI, Gang DUAN, Long-Bao LYU, Zhi-Ye ZHANG, Huang LIU, Xun XIANG.  Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.492
    [4] Bo LI, Rong-Ping ZHANG, Jin-Tao LI, Bao-Li HE, Hong ZHEN, Li-Mei WANG, Jian-Lin JIAO.  Measurement and analysis of anatomical parameter values in tree shrews, Zoological Research. doi: 10.3724/SP.J.1141.2013.02132
    [5] Xiao-Yun WU, Yun-Hai LI, Qing CHANG, Lin-Qiang ZHANG, Sha-Sha LIAO, Bin LIANG.  Streptozotocin induction of type 2 diabetes in tree shrew, Zoological Research. doi: 10.3724/SP.J.1141.2013.02108
    [6] ZHANG Yuan-Xu, PING Shu-Huang, YANG Shi-Hua.  Morphological characteristics and cryodamage of Chinese tree shrew (Tupaia belangeri chinensis) sperm, Zoological Research. doi: 10.3724/SP.J.1141.2012.01029
    [7] LI Sheng-An, LEE Wen-Hui, ZHANG Yun.  Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents, Zoological Research. doi: 10.3724/SP.J.1141.2012.01001
    [8] SUN Yong-Mei, YANG Jian-Zhen, SUN Hua-Ying, MA Yuan-Ye, WANG Jian-Hong.  Establishment of tree shrew chronic morphine dependent model, Zoological Research. doi: 10.3724/SP.J.1141.2012.01014
    [9] WANG Jing, ZHOU Qi-Xin, TIAN Men, YANG Yue-Xiong, XU Lin.  Tree shrew models: A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory, Zoological Research. doi: 10.3724/SP.J.1141.2011.01024
    [10] MA Xu-Tong, LI Fu-Lin, JIANG Hong-Jun, LI Wen-Hui, ZHANG Yun, DU Ting-Yi.  Detection and comparison of physiological indexes in the wild and laboratory tree shrew, Zoological Research. doi: 10.3724/SP.J.1141.2011.01004
    [11] ZHANG Ding, GAO Li, ZHANG Yuan-xu, SUN Li, FENG Yue, HE You-wen, XIA Xue-shan, ZHAN.  Crucial Factors for de novo Establishment of Long-term Primary Culture of Tree Shrew Hepatocytes, Zoological Research. doi: 10.3724/SP.J.1141.2009.01024
    [12] YANG Min, ZHANG Chi-yu, BEN Kun-long.  Cloning and Sequence Analysis of Cyclin T1 cDNA from Tree Shrew (Tupaia belangeri), Zoological Research.
    [13] ZHANG Li, BEN Kun-Long.  In vitro Infection of Tree Shrew Immunocytes with Human Immunodeficiency Virus Type Ⅰ, Zoological Research.
    [14] ZHENG Zi-xiu, ZHONG Jin-yan.  Studies on The Lactate Dehydrogenase Isoenzymes of Tree Shrew (Tupaia belangeri chinensis) Tissues:An Electrophoretic Analysis on The Agarose Gel ), Zoological Research.
    [15] CAO Xiao-mei.  Microscopic Structure of Ovary and Ovarian Activity of Different Seasons in Tree Shrew (Tupaia belangeri chinensis), Zoological Research.
    [16] YE Zhi-zhang, PENG Yen-zhang, PAN Ru-liang, WANG Hong.  Arterial System in Chinese Tree Shrew (Tupaia belangeri chinensis), Zoological Research.
    [17] ZOU Ru-jin, TIAN Bao-pin, JI Wei-zhi, LI Rui-yuan.  Research on The Piebaldism of Tree Shrews Breeding in The Captivity, Zoological Research.
    [18] CAO Xiao-mei.  Seasonal Changes in Spermatogenesis of Tree Shrew (Tupaia Belangeri Chinensis), Zoological Research.
    [19] MA Cai-xia, MA Kun, SHI Li-ming.  Electron Microscopic Observations on The Synaptonemal Complex in Spermatocytes of The Tree Shrew (Tupaiabelangeri Chinensis), Zoological Research.
    [20] ZHANG Ya-ping, ZHANG Bing, SHI Li-ming.  Restriction Maps of Mitochondrial DNA of Slow Loris and Tree Shrew, Zoological Research.
  • 加载中
计量
  • 文章访问数:  505
  • HTML全文浏览量:  87
  • PDF下载量:  921
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-03-18

Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging

doi: 10.24272/j.issn.2095-8137.2017.013
    基金项目:  This work was supported by the Hundred-Talent Program of Chinese Academy of Sciences (Y406541141; 1100050210) to J.L., the National Natural Science Foundation of China (81471313; 91649119) to J.L., the National Science and Technology Infrastructure Program (2014BAI01B01-04) to S.L., and the National Natural Science Foundation of China (31260242 to) F.L.
    通讯作者: Fan Li, Jia-Li Li

摘要: 大脑的发育生长和老化过程与多个表观遗传调控系统密切相关。其中就包括DNA甲基化和去甲基化的动态变化。在本研究中,我们观察了在树鼩大脑发育生长和老化过程中TET家族酶介导的DNA去甲基化中间产物5-羟甲基化胞嘧啶(5hmC)的动态变化特征和潜在的影响作用。结果表明,在树鼩大脑发育生长过程中,5hmC水平主要表现为渐进性升高;在大脑老化过程中,多个脑区包括新皮层的前额叶、顶叶、枕叶和海马的神经元内5hmC出现显著地减低,但是这一现象并没有显著地发生在小脑区域。进一步研究发现,TET家族酶TET2号TET3的表达水平变化与5hmC变化一致,推测它们的表达和功能变化可能是决定5hmC动态变化的关键因素。我们的研究揭示了树鼩大脑发育和老化过程中5hmC的变化具有明显地时空特异性,为下一步利用树鼩对象,探讨脑发育和老化的机理、以及神经系统疾病的相关科学问题提供了新的方向。

English Abstract

魏姝, 华海蓉, 陈千权, 张莹, 陈菲, 李树清, 李凡, 李家立. 树鼩大脑发育和老化过程中DNA去甲基化修饰的动态变化特征[J]. 动物学研究, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013
引用本文: 魏姝, 华海蓉, 陈千权, 张莹, 陈菲, 李树清, 李凡, 李家立. 树鼩大脑发育和老化过程中DNA去甲基化修饰的动态变化特征[J]. 动物学研究, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013
Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013
Citation: Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 2017, 38(2): 96-102. doi: 10.24272/j.issn.2095-8137.2017.013
参考文献 (49)

目录

    /

    返回文章
    返回