留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea)

Jing YANG Xin-Jiang LU Fang-Chao CHAI Jiong CHEN

Jing YANG, Xin-Jiang LU, Fang-Chao CHAI, Jiong CHEN. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zoological Research, 2016, 37(6): 347-355. doi: 10.13918/j.issn.2095-8137.2016.6.347
Citation: Jing YANG, Xin-Jiang LU, Fang-Chao CHAI, Jiong CHEN. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zoological Research, 2016, 37(6): 347-355. doi: 10.13918/j.issn.2095-8137.2016.6.347

一个大黄鱼piscidin基因的分子鉴定和功能分析

doi: 10.13918/j.issn.2095-8137.2016.6.347
详细信息
    通讯作者:

    Jiong CHEN

Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea)

Funds: This project was supported by the National 863 Project (2012AA10A403), the Scientific Research Foundation of Graduate School of Ningbo University (G16089), and KC Wong Magna Fund in Ningbo University
More Information
    Corresponding author: Jiong CHEN
  • 摘要: Piscidin抗菌肽家族是鱼类抗菌肽之一,具有广谱抗菌活性,在先天性免疫系统中起着重要作用。本研究鉴定了一种大黄鱼piscidin抗菌肽piscidin-5-like type 3(Lcpis5lt3)基因。多重序列比对揭示Lcpis5lt3与其它鱼类piscidin氨基酸序列在信号肽端高度保守。系统进化树显示Lcpis5lt3与其他大黄鱼piscidin-5-like紧密成簇。实时荧光定量PCR(Quantitative PCR)结果显示,Lcpis5lt3在所检测的组织,包括脑、肌肉、鳃、头肾、肠、肾、肝和脾中均有表达,其中在脾和头肾中表达量较高。大黄鱼感染溶藻弧菌后,Lcpis5lt3 mRNA表达量在鳃、头肾、肠、肾和肝组织中的4 h、8 h、12 h和24 h均上调,而在脾组织中表达量无明显变化。用合成的Lcpis5lt3成熟肽进行体外抑菌实验,发现Lcpis5lt3成熟肽对多种细菌有不同的抗菌能力,如嗜水气单胞菌、鳗弧菌、溶藻弧菌、副溶血弧菌、金黄色葡萄球菌和单核细胞增生李斯特菌。感染溶藻弧菌的大黄鱼注射Lcpis5lt3成熟肽后,存活率增加,组织及血液载菌量降低,组织肿瘤坏死因子-α、白细胞介素-1β和白细胞介素-10三种细胞因子的表达量下调。综上,Lcpis5lt3在大黄鱼先天性免疫中起重要作用,并有可能会作为一种新型药物抵抗病原菌的感染。
  • [1] Bae JS, Jung JM, An CM, Kim JW, Hwang SD, Kwon MG, Park MA, Kim MC, Park CI. 2016. Piscidin: antimicrobial peptide of rock bream, Oplegnathus fasciatus. Fish & Shellfish Immunology, 51: 136-142.
    [2] Buonocore F, Randelli E, Casani D, Picchietti S, Belardinelli MC, de Pascale D, De Santi C, Scapigliati G. 2012. A piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus (Perciformes: Channichthyidae): molecular characterization, localization and bactericidal activity. Fish & Shellfish Immunology, 33(5): 1183-1191.
    [3] Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. 2013. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7): 1917-1942.
    [4] Chen J, Chen Q, Lu XJ, Li CH. 2014. LECT2 improves the outcomes in ayu with Vibrio anguillarum infection via monocytes/macrophages. Fish & Shellfish Immunology, 41(2): 586-592.
    [5] Chen J, Chen Q, Lu XJ, Chen J. 2016. The protection effect of LEAP-2 on the mudskipper (Boleophthalmus pectinirostris) against Edwardsiella tarda infection is associated with its immunomodulatory activity on monocytes/macrophages. Fish & Shellfish Immunology, 59: 66-76.
    [6] Chen XH, Lin KB, Wang XW. 2003. Outbreaks of an iridovirus disease in maricultured large yellow croaker, Larimichthys crocea (Richardson), in China. Journal of Fish Diseases, 26(10): 615-619.
    [7] Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L. 2004. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology, 323(2): 268-275.
    [8] Colorni A, Ullal A, Heinisch G, Noga EJ. 2008. Activity of the antimicrobial polypeptide piscidin 2 against fish ectoparasites. Journal of Fish Diseases, 31(6): 423-432.
    [9] Corrales J, Mulero I, Mulero V, Noga EJ. 2010. Detection of antimicrobial peptides related to piscidin 4 in important aquacultured fish. Developmental & Comparative Immunology, 34(3): 331-343.
    [10] Douglas SE, Patrzykat A, Pytyck J, Gallant JW. 2003. Identification, structure and differential expression of novel pleurocidins clustered on the genome of the winter flounder, Pseudopleuronectes americanus (Walbaum). European Journal of Biochemistry, 270(18): 3720-3730.
    [11] Fernandes JMO, Ruangsri J, Kiron V. 2010. Atlantic cod piscidin and its diversification through positive selection. PLoS One, 5(3): e9501.
    [12] Gomes RN, Teixeira-Cunha MGA, Figueiredo RT, Almeida PE, Alves SC, Bozza PT, Bozza FA, Bozza MT, Zimmerman GA, Castro-Faria-Neto HC. 2013. Bacterial clearance in septic mice is modulated by MCP-1/CCL2 and nitric oxide. Shock, 39(1): 63-69.
    [13] KATZENBACK BA. 2015. Antimicrobial peptides as mediators of innate immunity in teleosts. Biology, 4(4): 607-639.
    [14] Kayansamruaj P, Pirarat N, Hirono I, Rodkhum C. 2014. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Veterinary Microbiology, 172(1-2): 265-271.
    [15] Lauth X, Shike H, Burns JC, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Nizet V, Taylor SW, Shimizu C, Bulet P. 2002. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. Journal of Biological Chemistry, 277(7): 5030-5039.
    [16] Li CH, Lu XJ, Li DF, Chen J. 2014a. Passive protective effect of chicken egg yolk immunoglobulins against experimental Vibrio anguillarum infection in ayu (Plecoglossus altivelis). Fish & Shellfish Immunology, 37(1): 108-114.
    [17] Li CH, Lu XJ, Li MY, Chen J. 2015. Cathelicidin modulates the function of monocytes/macrophages via the P2X7 receptor in a teleost, Plecoglossus altivelis. Fish & Shellfish Immunology, 47(2): 878-885.
    [18] Li HX, Lu XJ, Li CH, Chen J. 2014b. Molecular characterization and functional analysis of two distinct liver-expressed antimicrobial peptide 2 (LEAP-2) genes in large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology, 38(2): 330-339.
    [19] Lin WC, Chang HY, Chen JY. 2016. Electrotransfer of the tilapia piscidin 3 and tilapia piscidin 4 genes into skeletal muscle enhances the antibacterial and immunomodulatory functions of Oreochromis niloticus. Fish & Shellfish Immunology, 50: 200-209.
    [20] Liu L, Ge MF, Zheng XY, Tao Z, Zhou SM, Wang GL. 2016. Investigation of Vibrio alginolyticus, V. harveyi, and V. parahaemolyticus in large yellow croaker, Pseudosciaena crocea (Richardson) reared in Xiangshan Bay, China. Aquaculture Reports, 3: 220-224.
    [21] Lu XJ, Zhang H, Yang GJ, Li MY, Chen J. 2016. Comparative transcriptome analysis on the alteration of gene expression in ayu (Plecoglossus altivelis) larvae associated with salinity change. Zoological Research, 37(3): 126-135.
    [22] Masso-Silva JA, Diamond G. 2014. Antimicrobial peptides from fish. Pharmaceuticals, 7(3): 265-310.
    [23] Mukherjee S, Hooper L V. 2015. Antimicrobial defense of the intestine. Immunity, 42(1): 28-39.
    [24] Narayana JL, Huang HN, Wu CJ, Chen JY. 2015. Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model. Oncotarget, 6(15): 12936-12954.
    [25] Niu SF, Jin Y, Xu X, Qiao Y, Wu Y, Mao Y, Su YQ, Wang J. 2013. Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. Fish & Shellfish Immunology, 35(2): 513-524.
    [26] Noga EJ, Silphaduang U, Park NG, Seo JK, Stephenson J, Kozlowicz S. 2009. Piscidin 4, a novel member of the piscidin family of antimicrobial peptides. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 152(4): 299-305.
    [27] Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY. 2012. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS One, 7(11): e50263.
    [28] Ringø E. 2011. Evaluation of probiotic strain Bacillus subtilis C-3102 as a feed supplement for koi carp (Cyprinus carpio). Journal of Aquaculture Research & Development, S1: 005.
    [29] Roca FJ, Mulero I, López-Muñoz A, Sepulcre MP, Renshaw SA, Meseguer J, Mulero V. 2008. Evolution of the inflammatory response in vertebrates: fish TNF-α is a powerful activator of endothelial cells but hardly activates phagocytes. The Journal of Immunology, 181(7): 5071-5081.
    [30] Ruangsri J, Salger SA, Caipang CMA, Kiron V, Fernandes JMO. 2012. Differential expression and biological activity of two piscidin paralogues and a novel splice variant in Atlantic cod (Gadus morhua L.). Fish & Shellfish Immunology, 32(3): 396-406.
    [31] Salger SA, Reading BJ, Baltzegar DA, Sullivan CV, Noga EJ. 2011. Molecular characterization of two isoforms of piscidin 4 from the hybrid striped bass (Morone chrysops x Morone saxatilis). Fish & Shellfish Immunology, 30(1): 420-424.
    [32] Samad APA, Santoso U, Lee MC, Nan FH. 2014. Effects of dietary katuk (Sauropus androgynus L. Merr.) on growth, non-specific immune and diseases resistance against Vibrio alginolyticus infection in grouper Epinephelus coioides. Fish & Shellfish Immunology, 36(2): 582-589.
    [33] Secombes CJ, Wang T, Bird S. 2011. The interleukins of fish. Developmental & Comparative Immunology, 35(12): 1336-1345.
    [34] Seppola M, Larsen AN, Steiro K, Robertsen B, Jensen I. 2008. Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Molecular Immunology, 45(4): 887-897.
    [35] Silphaduang U, Noga EJ. 2001. Peptide antibiotics in mast cells of fish. Nature, 414(6861): 268-269.
    [36] Sun BJ, Xie HX, Song Y, Nie P. 2007. Gene structure of an antimicrobial peptide from mandarin fish, Siniperca chuatsi (Basilewsky), suggests that moronecidins and pleurocidins belong in one family: the piscidins. Journal of Fish Diseases, 30(6): 335-343.
    [37] Sung WS, Lee J, Lee DG. 2008. Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Biochemical and Biophysical Research Communications, 371(3): 551-555.
    [38] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731-2739.
    [39] Umasuthan N, Mothishri MS, Thulasitha WS, Nam BH, Lee J. 2016. Molecular, genomic, and expressional delineation of a piscidin from rock bream (Oplegnathus fasciatus) with evidence for the potent antimicrobial activities of Of-Pis1 peptide. Fish & Shellfish Immunology, 48: 154-168.
    [40] Wang TH, Secombes CJ. 2013. The cytokine networks of adaptive immunity in fish. Fish & Shellfish Immunology, 35(6): 1703-1718.
    [41] Wu CW, Zhang D, Kan MY, Lv ZM, Zhu AY, Su YQ, Zhou DZ, Zhang JS, Zhang Z, Xu MY, Jiang LH, Guo BY, Wang T, Chi CF, Mao Y, Zhou JJ, Yu XX, Wang HL, Weng XL, Jin JG, Ye JY, He L, Liu Y. 2014. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nature Communications, 5: 5227.
    [42] Wu J, Shi YH, Zhang XH, Li CH, Li MY, Chen J. 2015. Molecular characterization of an IL-1β gene from the large yellow croaker (Larimichthys crocea) and its effect on fish defense against Vibrio alginolyticus infection. Zoological Research, 36(3): 133-141.
    [43] Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature, 415(6870): 389-395.
    [44] Zhou QJ, Su YQ, Niu SF, Liu M, Qiao Y, Wang J. 2014. Discovery and molecular cloning of piscidin-5-like gene from the large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology, 41(2): 417-420.
    [45] Zhu LY, Nie L, Zhu G, Xiang LX, Shao JZ. 2013. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Developmental & Comparative Immunology, 39(1-2): 39-62.
  • [1] Yi Tang, Ge Xin, Ling-Min Zhao, Li-Xing Huang, Ying-Xue Qin, Yong-Quan Su, Wei-Qiang Zheng, Bin Wu, Nan Lin, Qing-Pi Yan.  Novel insights into host-pathogen interactions of large yellow croakers (Larimichthys crocea) and pathogenic bacterium Pseudomonas plecoglossicida using time-resolved dual RNA-seq of infected spleens, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.035
    [2] Lu-Ying Wang, Zi-Xu Liu, Ling-Min Zhao, Li-Xing Huang, Ying-Xue Qin, Yong-Quan Su, Wei-Qiang Zheng, Fan Wang, Qing-Pi Yan.  Dual RNA-seq provides novel insight into the roles of dksA from Pseudomonas plecoglossicida in pathogen-host interactions with large yellow croakers (Larimichthys crocea), Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.048
    [3] Ruo-Han Qi, Yan Chen, Zhi-Lai Guo, Fen Zhang, Zheng Fang, Kai Huang, Hai-Ning Yu, Yi-Peng Wang.  Identification and characterization of two novel cathelicidins from the frog Odorrana livida, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.062
    [4] Xu Luo, Yu-Ze Zhao, Jing Ma, Jian-Qiang Li, Ji-Liang Xu.  Nest survival rate of Reeves's pheasant(Syrmaticus reevesii) based on artificial nest experiments, Zoological Research. doi: 10.13918/j.issn.2095-8137.2017.008
    [5] Yuan-Wei ZHANG, Xiao-Fu PAN, Xiao-Ai WANG, Wan-Sheng JIANG, Qian LIU, Jun-Xing YANG.  Effects of osmotic pressure, temperature and stocking density on survival and sexual reproduction of Craspedacusta sowerbii, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.2.90
    [6] Jun WU, Yu-Hong SHI, Xue-Heng ZHANG, Chang-Hong LI, Ming-Yun LI, Jiong CHEN.  Molecular characterization of an IL-1β gene from the large yellow croaker (Larimichthys crocea) and its effect on fish defense against Vibrio alginolyticus infection, Zoological Research.
    [7] Wei-Ye LI, Yi-Quan WANG.  Establishment of full-sib families of Branchiostoma japonicum and the relationship between early development patterns and larvae survival rates, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.5.0446
    [8] LI Sheng-An, LEE Wen-Hui, ZHANG Yun.  Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents, Zoological Research. doi: 10.3724/SP.J.1141.2012.01001
    [9] SHI Yu-Hong, CHEN Jiong, GAO Shan-Shan, SHEN Guang-Qiang, LU Xin-Jiang, LI Ming-Yun.  Cloning, physical and chemical property analysis of the Japanese sea bass Wap65-2 gene and its expression following Vibrio harveyi infection, Zoological Research. doi: 10.3724/SP.J.1141.2012.05481
    [10] YAN Mao-Cang, SHAN Le-Zhou, CHEN Shao-Bo, XIE Qi-Lang.  Effects of three antigens extracted from Vibrio vulnificus on the immunological protection of Nibea albiflora, Zoological Research. doi: 10.3724/SP.J.1141.2012.05503
    [11] GUANG Hui-Juan, LI Zheng, WANG Yi-Peng, LAI Ren, YU Hai-Ning.  Progress in cathelicidins antimicrobial peptides research, Zoological Research. doi: 10.3724/SP.J.1141.2012.05523
    [12] PAN Xiao-Fu, YANG Jun-Xing, CHEN Xiao-Yong, LI Zai-Yun.  Broodstocks management, fecundity and the relationship between egg size and embryo survival ability of Sinocyclocheilus grahami, Zoological Research. doi: 10.3724/SP.J.1141.2011.02196
    [13] WANG Yi-Peng, LAI Ren.  Insect Antimicrobial Peptides: Structures, Properties and Gene Regulation, Zoological Research. doi: 10.3724/SP.J.1141.2010.01027
    [14] Chen Xin-xin, Yu guo-yu, ZHAN Yan, Zhang Yun, Shen Ji-hong, Lee We.  Effects of the Antimicrobial Peptide OH-CATH on Escherichia coli, Zoological Research. doi: 10.3724/SP.J.1141.2009.02171
    [15] CHANG Yu-mei, XU Wan-tu, CHI Bing-jie, GAO Guo-qiang, HAN Qi-xia, HE Wei, SUN Xiao-we.  Kinship Analysis of One Broodstock Population of Large Yellow Croaker Pseudosciaena crocea, Zoological Research. doi: 10.3724/SP.J.1141.2009.06620
    [16] ZHANG Ying-xia, ZOU Ai-hui, MANCHU Ri-ga, ZHOU Yong-can, WANG Shi-feng.  Purification and Antimicrobial Activity of Antimicrobial Protein from Brown-spotted Grouper, Epinephelus fario, Zoological Research. doi: 10.3724/SP.J.1141.2008.06627
    [17] CHE Yi, SUN Hua-ying, PENG Yan-ping, ZENG Tao, MA Yuan-ye.  A New Method for Heart Rate Recording in Chick Embryo, Zoological Research.
    [18] AN Xian-hui, LV Yi, LI Wei-guo, LIANG Jian-guo, XU Chun-hua, ZHANG Chong-xing et al..  Antimicrobial Peptides Purified from Penus chinensis, Zoological Research.
    [19] LAI Ren, LIANG Jian-guo, ZHANG Yun.  Antimicrobial Peptides in Amphibian Skins and Their Application, Zoological Research.
    [20] LI Jing, LI Qing-fen, ZHENG Guang-mei.  Studies on The Resting Metabolic Rate of The Yellow-Bellied Tragopan (Tragopan caboti), Zoological Research.
  • 加载中
计量
  • 文章访问数:  455
  • HTML全文浏览量:  24
  • PDF下载量:  1483
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-09
  • 刊出日期:  2016-11-18

Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea)

doi: 10.13918/j.issn.2095-8137.2016.6.347
    基金项目:  This project was supported by the National 863 Project (2012AA10A403), the Scientific Research Foundation of Graduate School of Ningbo University (G16089), and KC Wong Magna Fund in Ningbo University
    通讯作者: Jiong CHEN

摘要: Piscidin抗菌肽家族是鱼类抗菌肽之一,具有广谱抗菌活性,在先天性免疫系统中起着重要作用。本研究鉴定了一种大黄鱼piscidin抗菌肽piscidin-5-like type 3(Lcpis5lt3)基因。多重序列比对揭示Lcpis5lt3与其它鱼类piscidin氨基酸序列在信号肽端高度保守。系统进化树显示Lcpis5lt3与其他大黄鱼piscidin-5-like紧密成簇。实时荧光定量PCR(Quantitative PCR)结果显示,Lcpis5lt3在所检测的组织,包括脑、肌肉、鳃、头肾、肠、肾、肝和脾中均有表达,其中在脾和头肾中表达量较高。大黄鱼感染溶藻弧菌后,Lcpis5lt3 mRNA表达量在鳃、头肾、肠、肾和肝组织中的4 h、8 h、12 h和24 h均上调,而在脾组织中表达量无明显变化。用合成的Lcpis5lt3成熟肽进行体外抑菌实验,发现Lcpis5lt3成熟肽对多种细菌有不同的抗菌能力,如嗜水气单胞菌、鳗弧菌、溶藻弧菌、副溶血弧菌、金黄色葡萄球菌和单核细胞增生李斯特菌。感染溶藻弧菌的大黄鱼注射Lcpis5lt3成熟肽后,存活率增加,组织及血液载菌量降低,组织肿瘤坏死因子-α、白细胞介素-1β和白细胞介素-10三种细胞因子的表达量下调。综上,Lcpis5lt3在大黄鱼先天性免疫中起重要作用,并有可能会作为一种新型药物抵抗病原菌的感染。

English Abstract

杨晶, 陆新江, 柴方超, 陈炯. 一个大黄鱼piscidin基因的分子鉴定和功能分析[J]. 动物学研究, 2016, 37(6): 347-355. doi: 10.13918/j.issn.2095-8137.2016.6.347
引用本文: 杨晶, 陆新江, 柴方超, 陈炯. 一个大黄鱼piscidin基因的分子鉴定和功能分析[J]. 动物学研究, 2016, 37(6): 347-355. doi: 10.13918/j.issn.2095-8137.2016.6.347
Jing YANG, Xin-Jiang LU, Fang-Chao CHAI, Jiong CHEN. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zoological Research, 2016, 37(6): 347-355. doi: 10.13918/j.issn.2095-8137.2016.6.347
Citation: Jing YANG, Xin-Jiang LU, Fang-Chao CHAI, Jiong CHEN. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zoological Research, 2016, 37(6): 347-355. doi: 10.13918/j.issn.2095-8137.2016.6.347
参考文献 (45)

目录

    /

    返回文章
    返回