留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年  第37卷  第4期

显示方式:
Full issue
Review
Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine.
With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches.
In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.
Insects compose more than half of all living organisms on earth, playing essential roles in global ecosystems and forming complex relationships with humans. Insect research has significant biological and practical importance. However, the application of genetic manipulation technology has long been restricted to several model insects only, such as gene knockout in Drosophila, which has severely restrained the development of insect biology research. Recently, with the increase in the release of insect genome data and the introduction of the CRISPR/Cas9 system for efficient genetic modification, it has been possible to conduct meaningful functional studies in a broad array of insect species. Here, we summarize the advances in CRISPR/Cas9 in different insect species, discuss methods for its promotion, and consider its application in future insect studies. This review provides detailed information about the application of the CRISPR/Cas9 system in insect research and presents possible ways to improve its use in functional studies and insect pest control.
The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions.
Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regeneration, genetics, and toxicology due to their large and abundant eggs, as well as their versatile embryos, which can be readily manipulated and developed in vivo. Furthermore, amphibians have also proven to be of considerable benefit in human disease research due to their conserved cellular developmental and genomic organization. This review gives a brief introduction on the progress and limitations of these animal models in biology and human disease research, and discusses the potential and challenge of Microhyla fissipes as a new model organism.
Articles
Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection.
As a novel experimental animal model, tree shrews have received increasing attention in recent years. Despite this, little is known in regards to the time phases of their embryonic development. In this study, surveillance systems were used to record the behavior and timing of copulations; embryos at different post-copulation stages were collected and cultured in vitro; and the developmental characteristics of both early-stage and in vitro cultured embryos were determined. A total of 163 females were collected following effective copulation, and 150 were used in either unilateral or bilateral oviduct embryo collections, with 307 embryos from 111 females obtained (conception rate=74%). Among them, 237 embryos were collected from 78 females, bilaterally, i.e., the average embryo number per female was 3.04; 172 fertilized eggs collected from 55 females, bilaterally, were cultured for 24-108 h in vitro for developmental observations; finally, 65 embryos from 23 bilateral cases and 70 embryos from 33 unilateral cases were used in embryo transplantation.